Zoledronic Acid Blocks Overactive Kir6.1/SUR2-Dependent KATP Channels in Skeletal Muscle and Osteoblasts in a Murine Model of Cantú Syndrome

Rosa Scala, Fatima Maqoud, Conor McClenaghan, Theresa M. Harter, Maria Grazia Perrone, Antonio Scilimati, Colin G. Nichols, Domenico Tricarico

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Cantú syndrome (CS) is caused by the gain of function mutations in the ABCC9 and KCNJ8 genes encoding, respectively, for the sulfonylureas receptor type 2 (SUR2) and the inwardly rectifier potassium channel 6.1 (Kir6.1) of the ATP-sensitive potassium (KATP) channels. CS is a multi-organ condition with a cardiovascular phenotype, neuromuscular symptoms, and skeletal malformations. Glibenclamide has been proposed for use in CS, but even in animals, the drug is incompletely effective against severe mutations, including the Kir6.1wt/V65M. Patch-clamp experiments showed that zoledronic acid (ZOL) fully reduced the whole-cell KATP currents in bone calvaria cells from wild type (WT/WT) and heterozygous Kir6.1wt/V65MCS mice, with IC50 for ZOL block < 1 nM in each case. ZOL fully reduced KATP current in excised patches in skeletal muscle fibers in WT/WT and CS mice, with IC50 of 100 nM in each case. Interestingly, KATP currents in the bone of heterozygous SUR2wt/A478V mice were less sensitive to ZOL inhibition, showing an IC50 of ~500 nM and a slope of ~0.3. In homozygous SUR2A478V/A478V cells, ZOL failed to fully inhibit the KATP currents, causing only ~35% inhibition at 100 μM, but was responsive to glibenclamide. ZOL reduced the KATP currents in Kir6.1wt/VMCS mice in both skeletal muscle and bone cells but was not effective in the SUR2[A478V] mice fibers. These data indicate a subunit specificity of ZOL action that is important for appropriate CS therapies.

Original languageEnglish
Article number928
JournalCells
Volume12
Issue number6
DOIs
StatePublished - Mar 2023

Keywords

  • ATP-sensitive potassium channel
  • Cantú syndrome
  • anti-cancer drug
  • glibenclamide
  • patch clamp
  • rare disease
  • skeletal muscle
  • zoledronic acid

Fingerprint

Dive into the research topics of 'Zoledronic Acid Blocks Overactive Kir6.1/SUR2-Dependent KATP Channels in Skeletal Muscle and Osteoblasts in a Murine Model of Cantú Syndrome'. Together they form a unique fingerprint.

Cite this