TY - JOUR
T1 - Yeast actin patches are networks of branched actin filaments
AU - Young, Michael E.
AU - Cooper, John A.
AU - Bridgman, Paul C.
PY - 2004/8/30
Y1 - 2004/8/30
N2 - Cortical actin patches are the most prominent actin structure in budding and fission yeast. Patches assemble, move, and disassemble rapidly. We investigated the mechanisms underlying patch actin assembly and motility by studying actin filament ultrastructure within a patch. Actin patches were partially purified from Saccharomyces cerevisiae and examined by negative-stain electron microscopy (EM). To identify patches in the EM, we correlated fluorescence and EM images of GFP-labeled patches. Patches contained a network of actin filaments with branches characteristic of Arp2/3 complex. An average patch contained 85 filaments. The average filament was only 50-nm (20 actin subunits) long, and the filament to branch ratio was 3:1. Patches lacking Sac6/fimbrin were unstable, and patches lacking capping protein were relatively normal. Our results are consistent with Arp2/3 complex-mediated actin polymerization driving yeast actin patch assembly and motility, as described by a variation of the dendritic nucleation model.
AB - Cortical actin patches are the most prominent actin structure in budding and fission yeast. Patches assemble, move, and disassemble rapidly. We investigated the mechanisms underlying patch actin assembly and motility by studying actin filament ultrastructure within a patch. Actin patches were partially purified from Saccharomyces cerevisiae and examined by negative-stain electron microscopy (EM). To identify patches in the EM, we correlated fluorescence and EM images of GFP-labeled patches. Patches contained a network of actin filaments with branches characteristic of Arp2/3 complex. An average patch contained 85 filaments. The average filament was only 50-nm (20 actin subunits) long, and the filament to branch ratio was 3:1. Patches lacking Sac6/fimbrin were unstable, and patches lacking capping protein were relatively normal. Our results are consistent with Arp2/3 complex-mediated actin polymerization driving yeast actin patch assembly and motility, as described by a variation of the dendritic nucleation model.
KW - Arp2/3 complex
KW - Correlation microscopy
KW - Dendritic nucleation
KW - Electron microscopy
KW - Yeast actin
UR - http://www.scopus.com/inward/record.url?scp=4444254413&partnerID=8YFLogxK
U2 - 10.1083/jcb.200404159
DO - 10.1083/jcb.200404159
M3 - Article
C2 - 15337772
AN - SCOPUS:4444254413
SN - 0021-9525
VL - 166
SP - 629
EP - 635
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 5
ER -