TY - JOUR
T1 - X-11-5-27, a daidzein derivative, inhibits NLRP3 inflammasome activity via promoting autophagy
AU - Zhou, Wei
AU - Liu, Xiuting
AU - Cheng, Kunpeng
AU - Zhang, Xin
AU - Lu, Jinrong
AU - Hu, Rong
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2017/11/15
Y1 - 2017/11/15
N2 - NLRP3 inflammasome is a cytoplasmic multiprotein complex which plays a critical role in response to infection or injury, however, aberrant NLRP3 inflammasome activation is deleterious. In our study, we investigate the inhibitory effect of X-11-5-27, a daidzein derivative, on the NLRP3 inflammasome. The results showed that the activation of NLRP3 inflammasome was inhibited by X-11-5-27 in a dose-dependent manner, followed by a decrease in the cleavage of caspase-1 and maturation of IL-1β. Furthermore, we found that X-11-5-27 significantly restrained the formation of NLRP3 inflammasome. At the same time, X-11-5-27 time- and dose-dependently decreased the production of ROS and superoxide. In addition, X-11-5-27 enhanced the activity of SOD to scavenge ROS release. This inhibitory effect of X-11-5-27 was due to the protection of mitochondrial homeostasis and was abolished after the treatment of rotenone. Notably, X-11-5-27 was found to trigger autophagy in macrophages, which in turn inhibited the NLRP3 inflammasome activation. Moreover, the phosphorylation states of the proteins in PI3K/AKT/mTOR signaling pathway were dramatically decreased after X-11-5-27 treatment. In conclusion, our results demonstrate that autophagy-mediated ROS reduction is responsible for X-11-5-27-induced NLRP3 flammasome inactivation. And these results may help guide decisions regarding the use of X-11-5-27 in relieving the inflammasome-driven hyper-inflammation.
AB - NLRP3 inflammasome is a cytoplasmic multiprotein complex which plays a critical role in response to infection or injury, however, aberrant NLRP3 inflammasome activation is deleterious. In our study, we investigate the inhibitory effect of X-11-5-27, a daidzein derivative, on the NLRP3 inflammasome. The results showed that the activation of NLRP3 inflammasome was inhibited by X-11-5-27 in a dose-dependent manner, followed by a decrease in the cleavage of caspase-1 and maturation of IL-1β. Furthermore, we found that X-11-5-27 significantly restrained the formation of NLRP3 inflammasome. At the same time, X-11-5-27 time- and dose-dependently decreased the production of ROS and superoxide. In addition, X-11-5-27 enhanced the activity of SOD to scavenge ROS release. This inhibitory effect of X-11-5-27 was due to the protection of mitochondrial homeostasis and was abolished after the treatment of rotenone. Notably, X-11-5-27 was found to trigger autophagy in macrophages, which in turn inhibited the NLRP3 inflammasome activation. Moreover, the phosphorylation states of the proteins in PI3K/AKT/mTOR signaling pathway were dramatically decreased after X-11-5-27 treatment. In conclusion, our results demonstrate that autophagy-mediated ROS reduction is responsible for X-11-5-27-induced NLRP3 flammasome inactivation. And these results may help guide decisions regarding the use of X-11-5-27 in relieving the inflammasome-driven hyper-inflammation.
KW - Autophagy
KW - Daidzein
KW - MTOR
KW - NLRP3 inflammasome
KW - ROS
UR - http://www.scopus.com/inward/record.url?scp=85029852201&partnerID=8YFLogxK
U2 - 10.1016/j.yexcr.2017.09.022
DO - 10.1016/j.yexcr.2017.09.022
M3 - Article
C2 - 28942022
AN - SCOPUS:85029852201
SN - 0014-4827
VL - 360
SP - 320
EP - 327
JO - Experimental Cell Research
JF - Experimental Cell Research
IS - 2
ER -