Abstract
The total number of glomeruli (nephrons) in a kidney is an important microanatomical parameter for at least three reasons: it provides an index of the success/extent of nephrogenesis and can thereby provide insights into the roles of specific genes and feto-maternal environmental factors in nephrogenesis; low nephron number has been linked to an increased risk of cardiovascular and renal disease in adulthood; and knowledge of quantitative kidney microanatomy can illuminate our understanding of physiological mechanisms in health and disease. A range of methods has been used to count glomeruli in kidneys over the past 100 years, with design-based stereology (the physical disector/fractionator combination) considered the gold standard. However, this approach is labor-intensive and expensive, and therefore is not utilized by most laboratories. A new method for counting and sizing every glomerulus in the kidney has recently been described. This method involves in vivo labeling of glomeruli with cationic ferritin, and then magnetic resonance imaging (MRI) of the ex vivo kidney. Values are obtained in one sixth of the time of disector-based approaches. This new MRI method holds great promise for studies of glomerular number and size ex vivo and in vivo.
Original language | English |
---|---|
Pages (from-to) | 575-580 |
Number of pages | 6 |
Journal | Pediatric Nephrology |
Volume | 29 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2014 |
Keywords
- Glomerular number
- Glomerulus
- Kidney
- Magnetic resonance imaging
- Stereology