TY - JOUR
T1 - Who is pregnant? Defining real-world data-based pregnancy episodes in the National COVID Cohort Collaborative (N3C)
AU - N3C Consortium
AU - Jones, Sara E.
AU - Bradwell, Katie R.
AU - Chan, Lauren E.
AU - McMurry, Julie A.
AU - Olson-Chen, Courtney
AU - Tarleton, Jessica
AU - Wilkins, Kenneth J.
AU - Ly, Victoria
AU - Ljazouli, Saad
AU - Qin, Qiuyuan
AU - Faherty, Emily Groene
AU - Lau, Yan Kwan
AU - Xie, Catherine
AU - Kao, Yu Han
AU - Liebman, Michael N.
AU - Mariona, Federico
AU - Challa, Anup P.
AU - Li, Li
AU - Ratcliffe, Sarah J.
AU - Haendel, Melissa A.
AU - Patel, Rena C.
AU - Hill, Elaine L.
AU - Wilcox, Adam B.
AU - Lee, Adam M.
AU - Graves, Alexis
AU - Anzalone, Alfred
AU - Manna, Amin
AU - Saha, Amit
AU - Olex, Amy
AU - Zhou, Andrea
AU - Williams, Andrew E.
AU - Southerland, Andrew
AU - Girvin, Andrew T.
AU - Walden, Anita
AU - Sharathkumar, Anjali A.
AU - Amor, Benjamin
AU - Bates, Benjamin
AU - Hendricks, Brian
AU - Patel, Brijesh
AU - Alexander, Caleb
AU - Bramante, Carolyn
AU - Ward-Caviness, Cavin
AU - Madlock-Brown, Charisse
AU - Suver, Christine
AU - Chute, Christopher
AU - Dillon, Christopher
AU - Wu, Chunlei
AU - Schmitt, Clare
AU - Takemoto, Cliff
AU - Housman, Dan
AU - Gabriel, Davera
AU - Eichmann, David A.
AU - Mazzotti, Diego
AU - Brown, Don
AU - Boudreau, Eilis
AU - Zampino, Elizabeth
AU - Marti, Emily Carlson
AU - Pfaff, Emily R.
AU - French, Evan
AU - Koraishy, Farrukh M.
AU - Prior, Fred
AU - Sokos, George
AU - Martin, Greg
AU - Lehmann, Harold
AU - Spratt, Heidi
AU - Mehta, Hemalkumar
AU - Liu, Hongfang
AU - Sidky, Hythem
AU - Awori Hayanga, J. W.
AU - Pincavitch, Jami
AU - Clark, Jaylyn
AU - Harper, Jeremy Richard
AU - Islam, Jessica
AU - Ge, Jin
AU - Gagnier, Joel
AU - Saltz, Joel H.
AU - Loomba, Johanna
AU - Buse, John
AU - Mathew, Jomol
AU - Rutter, Joni L.
AU - Starren, Justin
AU - Crowley, Karen
AU - Walters, Kellie M.
AU - Wilkins, Ken
AU - Gersing, Kenneth R.
AU - Cato, Kenrick Dwain
AU - Murray, Kimberly
AU - Kostka, Kristin
AU - Northington, Lavance
AU - Pyles, Lee Allan
AU - Misquitta, Leonie
AU - Cottrell, Lesley
AU - Portilla, Lili
AU - Deacy, Mariam
AU - Bissell, Mark M.
AU - Clark, Marshall
AU - Emmett, Mary
AU - Saltz, Mary Morrison
AU - Palchuk, Matvey B.
AU - Adams, Meredith
AU - Temple-O'Connor, Meredith
AU - Kurilla, Michael G.
AU - Morris, Michele
AU - Qureshi, Nabeel
AU - Safdar, Nasia
AU - Garbarini, Nicole
AU - Sharafeldin, Noha
AU - Sadan, Ofer
AU - Francis, Patricia A.
AU - Burgoon, Penny Wung
AU - Robinson, Peter
AU - Payne, Philip R.O.
AU - Fuentes, Rafael
AU - Jawa, Randeep
AU - Erwin-Cohen, Rebecca
AU - Moffitt, Richard A.
AU - Zhu, Richard L.
AU - Kamaleswaran, Rishi
AU - Hurley, Robert
AU - Miller, Robert T.
AU - Pyarajan, Saiju
AU - Michael, Sam G.
AU - Bozzette, Samuel
AU - Mallipattu, Sandeep
AU - Vedula, Satyanarayana
AU - Chapman, Scott
AU - O'Neil, Shawn T.
AU - Setoguchi, Soko
AU - Hong, Stephanie S.
AU - Johnson, Steve
AU - Bennett, Tellen D.
AU - Callahan, Tiffany
AU - Topaloglu, Umit
AU - Sheikh, Usman
AU - Gordon, Valery
AU - Subbian, Vignesh
AU - Kibbe, Warren A.
AU - Hernandez, Wenndy
AU - Beasley, Will
AU - Cooper, Will
AU - Hillegass, William
AU - Zhang, Xiaohan Tanner
N1 - Publisher Copyright:
© The Author(s) 2023.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - Objectives: To define pregnancy episodes and estimate gestational age within electronic health record (EHR) data from the National COVID Cohort Collaborative (N3C). Materials and Methods: We developed a comprehensive approach, named Hierarchy and rule-based pregnancy episode Inference integrated with Pregnancy Progression Signatures (HIPPS), and applied it to EHR data in the N3C (January 1, 2018–April 7, 2022). HIPPS combines: (1) an extension of a previously published pregnancy episode algorithm, (2) a novel algorithm to detect gestational age-specific signatures of a progressing pregnancy for further episode support, and (3) pregnancy start date inference. Clinicians performed validation of HIPPS on a subset of episodes. We then generated pregnancy cohorts based on gestational age precision and pregnancy outcomes for assessment of accuracy and comparison of COVID-19 and other characteristics. Results: We identified 628 165 pregnant persons with 816 471 pregnancy episodes, of which 52.3% were live births, 24.4% were other outcomes (stillbirth, ectopic pregnancy, abortions), and 23.3% had unknown outcomes. Clinician validation agreed 98.8% with HIPPS-identified episodes. We were able to estimate start dates within 1 week of precision for 475 433 (58.2%) episodes. 62 540 (7.7%) episodes had incident COVID-19 during pregnancy. Discussion: HIPPS provides measures of support for pregnancy-related variables such as gestational age and pregnancy outcomes based on N3C data. Gestational age precision allows researchers to find time to events with reasonable confidence. Conclusion: We have developed a novel and robust approach for inferring pregnancy episodes and gestational age that addresses data inconsistency and missingness in EHR data.
AB - Objectives: To define pregnancy episodes and estimate gestational age within electronic health record (EHR) data from the National COVID Cohort Collaborative (N3C). Materials and Methods: We developed a comprehensive approach, named Hierarchy and rule-based pregnancy episode Inference integrated with Pregnancy Progression Signatures (HIPPS), and applied it to EHR data in the N3C (January 1, 2018–April 7, 2022). HIPPS combines: (1) an extension of a previously published pregnancy episode algorithm, (2) a novel algorithm to detect gestational age-specific signatures of a progressing pregnancy for further episode support, and (3) pregnancy start date inference. Clinicians performed validation of HIPPS on a subset of episodes. We then generated pregnancy cohorts based on gestational age precision and pregnancy outcomes for assessment of accuracy and comparison of COVID-19 and other characteristics. Results: We identified 628 165 pregnant persons with 816 471 pregnancy episodes, of which 52.3% were live births, 24.4% were other outcomes (stillbirth, ectopic pregnancy, abortions), and 23.3% had unknown outcomes. Clinician validation agreed 98.8% with HIPPS-identified episodes. We were able to estimate start dates within 1 week of precision for 475 433 (58.2%) episodes. 62 540 (7.7%) episodes had incident COVID-19 during pregnancy. Discussion: HIPPS provides measures of support for pregnancy-related variables such as gestational age and pregnancy outcomes based on N3C data. Gestational age precision allows researchers to find time to events with reasonable confidence. Conclusion: We have developed a novel and robust approach for inferring pregnancy episodes and gestational age that addresses data inconsistency and missingness in EHR data.
KW - COVID-19
KW - algorithms
KW - electronic health records
KW - gestational age
KW - pregnancy
UR - http://www.scopus.com/inward/record.url?scp=85169507173&partnerID=8YFLogxK
U2 - 10.1093/jamiaopen/ooad067
DO - 10.1093/jamiaopen/ooad067
M3 - Article
C2 - 37600074
AN - SCOPUS:85169507173
SN - 2574-2531
VL - 6
JO - JAMIA Open
JF - JAMIA Open
IS - 3
M1 - ooad067
ER -