Weisfeiler-lehman neural machine for link prediction

Muhan Zhang, Yixin Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

195 Scopus citations

Abstract

In this paper, we propose a next-generation link prediction method, Weisfeiler-Lehman Neural Machine (WLNM), which learns topo-logical features in the form of graph patterns that promote the formation of links. WLNM has unmatched advantages including higher performance than state-of-the-art methods and universal applicability over various kinds of networks. WLNM extracts an enclosing subgraph of each target link and encodes the subgraph as an adjacency matrix. The key novelty of the encoding comes from a fast hashing-based Weisfeiler-Lehman (WL) algorithm that labels the vertices according to their structural roles in the subgraph while preserving the subgraph's intrinsic directionality. After that, a neural network is trained on these adjacency matrices to learn a predictive model. Compared with traditional link prediction methods, WLNM does not assume a particular link formation mechanism (such as common neighbors), but learns this mechanism from the graph itself. We conduct comprehensive experiments to show that WLNM not only outperforms a great number of state-of-the-art link prediction methods, but also consistently performs well across networks with different characteristics.

Original languageEnglish
Title of host publicationKDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages575-583
Number of pages9
ISBN (Electronic)9781450348874
DOIs
StatePublished - Aug 13 2017
Event23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017 - Halifax, Canada
Duration: Aug 13 2017Aug 17 2017

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F129685

Conference

Conference23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017
Country/TerritoryCanada
CityHalifax
Period08/13/1708/17/17

Keywords

  • Color refinement
  • Graph labeling
  • Link prediction
  • Neural network

Fingerprint

Dive into the research topics of 'Weisfeiler-lehman neural machine for link prediction'. Together they form a unique fingerprint.

Cite this