Voxel spread function method for correction of magnetic field inhomogeneity effects in quantitative gradient-echo-based MRI

Research output: Contribution to journalArticlepeer-review

98 Scopus citations

Abstract

Purpose Macroscopic magnetic field inhomogeneities adversely affect different aspects of MRI images. In quantitative MRI when the goal is to quantify biological tissue parameters, they bias and often corrupt such measurements. The goal of this article is to develop a method for correction of macroscopic field inhomogeneities that can be applied to a variety of quantitative gradient-echo-based MRI techniques. Methods We have reanalyzed a basic theory of gradient echo MRI signal formation in the presence of background field inhomogeneities and derived equations that allow for correction of magnetic field inhomogeneity effects based on the phase and magnitude of gradient echo data. We verified our theory by mapping effective transverse relaxation rate in computer simulated, phantom, and in vivo human data collected with multigradient echo sequences. Results The proposed technique takes into account voxel spread function effects and allowed obtaining virtually free from artifacts effective transverse relaxation rate maps for all simulated, phantom and in vivo data except of the edge areas with very steep field gradients. Conclusion The voxel spread function method, allowing quantification of tissue specific effective transverse relaxation rate-related tissue properties, has a potential to breed new MRI biomarkers serving as surrogates for tissue biological properties similar to longitudinal and transverse relaxation rate constants widely used in clinical and research MRI. Magn Reson Med 70:1283-1292, 2013. © 2012 Wiley Periodicals, Inc.

Original languageEnglish
Pages (from-to)1283-1292
Number of pages10
JournalMagnetic resonance in medicine
Volume70
Issue number5
DOIs
StatePublished - Nov 2013

Keywords

  • MRI
  • gradient echo
  • magnetic field inhomogeneities
  • magnetic susceptibility

Fingerprint

Dive into the research topics of 'Voxel spread function method for correction of magnetic field inhomogeneity effects in quantitative gradient-echo-based MRI'. Together they form a unique fingerprint.

Cite this