TY - JOUR
T1 - Vortex dynamics characteristics in the tip region based on Wray-Agarwal model
AU - Li, Wei
AU - Pu, Wei
AU - Ji, Leilei
AU - Liu, Mingjiang
AU - Yang, Qiaoyue
AU - He, Xinrui
AU - Agarwal, Ramesh
N1 - Publisher Copyright:
© 2024 Author(s).
PY - 2024/1/1
Y1 - 2024/1/1
N2 - In order to solve the blockage effect and energy dissipation phenomenon caused by cavitation in the low-pressure vortex core region, this paper analyzes the spatial evolution of vorticity intensity and turbulent kinetic energy intensity under different cavitation conditions based on the Wray-Agarwal (WA) model. First, the tip leakage flow characteristics are studied, the evolution of vorticity and vorticity intensity is analyzed, then the distribution of turbulent kinetic energy distribution in the blade tip region is studied, and finally, the vorticity transport characteristics of the tip region are analyzed. It is found that the tip leakage rate is less affected by the vortex cavitation of the tip leakage, and there is a strong interaction between the leakage flow at the tip leading edge and the trailing edge, and the separation vortices and low-speed regions formed in the end-wall region cause blockage of the flow passage. Low pressure causes cavitation to cover most regions of the suction surface, inhibiting the formation and development of the tip leakage vortices. The distribution range of high turbulent kinetic energy region is almost the same as that of high-vorticity region, and there is a positive correlation between the two intensities. Severe cavitation causes the high turbulent kinetic energy region at the outlet of the flow passage to develop in the radial and axial directions of the impeller, which increases the turbulent dissipation and energy loss. The change of vorticity transport intensity caused by cavitation is mainly reflected in the expansion contraction term, and the Coriolis force term plays a dominant role in the vorticity transport process. This paper provides a reference for further improving the performance of mixed-flow pumps.
AB - In order to solve the blockage effect and energy dissipation phenomenon caused by cavitation in the low-pressure vortex core region, this paper analyzes the spatial evolution of vorticity intensity and turbulent kinetic energy intensity under different cavitation conditions based on the Wray-Agarwal (WA) model. First, the tip leakage flow characteristics are studied, the evolution of vorticity and vorticity intensity is analyzed, then the distribution of turbulent kinetic energy distribution in the blade tip region is studied, and finally, the vorticity transport characteristics of the tip region are analyzed. It is found that the tip leakage rate is less affected by the vortex cavitation of the tip leakage, and there is a strong interaction between the leakage flow at the tip leading edge and the trailing edge, and the separation vortices and low-speed regions formed in the end-wall region cause blockage of the flow passage. Low pressure causes cavitation to cover most regions of the suction surface, inhibiting the formation and development of the tip leakage vortices. The distribution range of high turbulent kinetic energy region is almost the same as that of high-vorticity region, and there is a positive correlation between the two intensities. Severe cavitation causes the high turbulent kinetic energy region at the outlet of the flow passage to develop in the radial and axial directions of the impeller, which increases the turbulent dissipation and energy loss. The change of vorticity transport intensity caused by cavitation is mainly reflected in the expansion contraction term, and the Coriolis force term plays a dominant role in the vorticity transport process. This paper provides a reference for further improving the performance of mixed-flow pumps.
UR - http://www.scopus.com/inward/record.url?scp=85183969053&partnerID=8YFLogxK
U2 - 10.1063/5.0187241
DO - 10.1063/5.0187241
M3 - Article
AN - SCOPUS:85183969053
SN - 1070-6631
VL - 36
JO - Physics of Fluids
JF - Physics of Fluids
IS - 1
M1 - 013337
ER -