Vestibular effects of cochlear implantation

Craig Buchman, Jennifer Joy, Annelle Hodges, Fred F. Telischi, Thomas J. Balkany

Research output: Contribution to journalArticleResearchpeer-review

151 Citations (Scopus)

Abstract

Objectives/Hypothesis: Cochlear implantation (CI) carries with it the potential risk for vestibular system insult or stimulation with resultant dysfunction. As candidate profiles continue to evolve and with the recent development of bilateral CI, understanding the significance of this risk takes on an increasing importance. Study Design: Between 1997 to 2001, a prospective observational study was carried out in a tertiary care medical center to assess the effects of unilateral CI on the vestibular system. Methods: Assessment was performed using the dizziness handicap inventory (DHI), vestibulo-ocular reflex (VOR) testing using both alternate bithermal caloric irrigations (ENG) and rotational chair-generated sinusoidal harmonic accelerations (SHA), and computerized dynamic platform posturography (CDP) at preoperative, 1-month, 4-month, 1-year and 2-year postimplantation visits. CI was carried out without respect to the preoperative vestibular function test results. Results: Specifically, 86 patients were entered into the study after informed consent. For the group as a whole, pair wise comparisons revealed few significant differences between preoperative and postoperative values for VOR testing (ENG and SHA) at any of the follow-up intervals. Likewise, DHI testing was also unchanged except for significant reductions (improvements) in the emotional subcategory scores at both the 4-month and 1-year intervals. CDP results demonstrated substantial improvements in postural sway in the vestibular conditions (5 and 6) as well as composite scores with the device "off" and "on" at the 1-month, 4-month, 1-year, and 2-year intervals. Device activation appeared to improve postural stability in some conditions. Excluding those patients with pre-operative areflexic or hyporeflexic responses in the implanted ear (total [warm + cool] caloric response ≤ 15 deg/s), substantial reductions (≥221 deg/s maximum slow phase velocity) in total caloric response were observed for 8 (29%) patients at the 4-month interval. These persisted throughout the study period. These changes were accompanied by significant low frequency phase changes on SHA testing confirming a VOR insult. Of interest, no significant changes were detected in the DHI or CDP, and there were no effects of age, sex, device manufacturer, or etiology of hearing loss (HL) for these patients. Conclusions: Unilateral CI rarely results in significant adverse effects on the vestibular system as measured by the DHI, ENG, SHA, and CDP. On the contrary, patients that underwent CI experienced significant improvements in the objective measures of postural stability as measured by CDP. Device activation in music appeared to have an additional positive effect on postural stability during CDP testing. Although VOR testing demonstrated some decreases in response, patients did not suffer from disabling vestibular effects following CI. The mechanism underlying these findings remains speculative. These findings should be considered in counseling patients about CI.

Original languageEnglish
Pages (from-to)1-22
Number of pages22
JournalLaryngoscope
Volume114
Issue number10 II
StatePublished - Oct 1 2004

Fingerprint

Cochlear Implantation
Vestibulo-Ocular Reflex
Equipment and Supplies
Dizziness
Vestibular Function Tests
Music
Informed Consent
Hearing Loss
Tertiary Care Centers
Observational Studies
Ear
Counseling
Prospective Studies

Keywords

  • Cochlear implant
  • Dizziness
  • Electronystagmography
  • Platform posturography
  • Rotary chair
  • Vestibular

Cite this

Buchman, C., Joy, J., Hodges, A., Telischi, F. F., & Balkany, T. J. (2004). Vestibular effects of cochlear implantation. Laryngoscope, 114(10 II), 1-22.
Buchman, Craig ; Joy, Jennifer ; Hodges, Annelle ; Telischi, Fred F. ; Balkany, Thomas J. / Vestibular effects of cochlear implantation. In: Laryngoscope. 2004 ; Vol. 114, No. 10 II. pp. 1-22.
@article{7a92d7b57b074ba280be75635c8bddd3,
title = "Vestibular effects of cochlear implantation",
abstract = "Objectives/Hypothesis: Cochlear implantation (CI) carries with it the potential risk for vestibular system insult or stimulation with resultant dysfunction. As candidate profiles continue to evolve and with the recent development of bilateral CI, understanding the significance of this risk takes on an increasing importance. Study Design: Between 1997 to 2001, a prospective observational study was carried out in a tertiary care medical center to assess the effects of unilateral CI on the vestibular system. Methods: Assessment was performed using the dizziness handicap inventory (DHI), vestibulo-ocular reflex (VOR) testing using both alternate bithermal caloric irrigations (ENG) and rotational chair-generated sinusoidal harmonic accelerations (SHA), and computerized dynamic platform posturography (CDP) at preoperative, 1-month, 4-month, 1-year and 2-year postimplantation visits. CI was carried out without respect to the preoperative vestibular function test results. Results: Specifically, 86 patients were entered into the study after informed consent. For the group as a whole, pair wise comparisons revealed few significant differences between preoperative and postoperative values for VOR testing (ENG and SHA) at any of the follow-up intervals. Likewise, DHI testing was also unchanged except for significant reductions (improvements) in the emotional subcategory scores at both the 4-month and 1-year intervals. CDP results demonstrated substantial improvements in postural sway in the vestibular conditions (5 and 6) as well as composite scores with the device {"}off{"} and {"}on{"} at the 1-month, 4-month, 1-year, and 2-year intervals. Device activation appeared to improve postural stability in some conditions. Excluding those patients with pre-operative areflexic or hyporeflexic responses in the implanted ear (total [warm + cool] caloric response ≤ 15 deg/s), substantial reductions (≥221 deg/s maximum slow phase velocity) in total caloric response were observed for 8 (29{\%}) patients at the 4-month interval. These persisted throughout the study period. These changes were accompanied by significant low frequency phase changes on SHA testing confirming a VOR insult. Of interest, no significant changes were detected in the DHI or CDP, and there were no effects of age, sex, device manufacturer, or etiology of hearing loss (HL) for these patients. Conclusions: Unilateral CI rarely results in significant adverse effects on the vestibular system as measured by the DHI, ENG, SHA, and CDP. On the contrary, patients that underwent CI experienced significant improvements in the objective measures of postural stability as measured by CDP. Device activation in music appeared to have an additional positive effect on postural stability during CDP testing. Although VOR testing demonstrated some decreases in response, patients did not suffer from disabling vestibular effects following CI. The mechanism underlying these findings remains speculative. These findings should be considered in counseling patients about CI.",
keywords = "Cochlear implant, Dizziness, Electronystagmography, Platform posturography, Rotary chair, Vestibular",
author = "Craig Buchman and Jennifer Joy and Annelle Hodges and Telischi, {Fred F.} and Balkany, {Thomas J.}",
year = "2004",
month = "10",
day = "1",
language = "English",
volume = "114",
pages = "1--22",
journal = "Laryngoscope",
issn = "0023-852X",
number = "10 II",

}

Buchman, C, Joy, J, Hodges, A, Telischi, FF & Balkany, TJ 2004, 'Vestibular effects of cochlear implantation', Laryngoscope, vol. 114, no. 10 II, pp. 1-22.

Vestibular effects of cochlear implantation. / Buchman, Craig; Joy, Jennifer; Hodges, Annelle; Telischi, Fred F.; Balkany, Thomas J.

In: Laryngoscope, Vol. 114, No. 10 II, 01.10.2004, p. 1-22.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Vestibular effects of cochlear implantation

AU - Buchman, Craig

AU - Joy, Jennifer

AU - Hodges, Annelle

AU - Telischi, Fred F.

AU - Balkany, Thomas J.

PY - 2004/10/1

Y1 - 2004/10/1

N2 - Objectives/Hypothesis: Cochlear implantation (CI) carries with it the potential risk for vestibular system insult or stimulation with resultant dysfunction. As candidate profiles continue to evolve and with the recent development of bilateral CI, understanding the significance of this risk takes on an increasing importance. Study Design: Between 1997 to 2001, a prospective observational study was carried out in a tertiary care medical center to assess the effects of unilateral CI on the vestibular system. Methods: Assessment was performed using the dizziness handicap inventory (DHI), vestibulo-ocular reflex (VOR) testing using both alternate bithermal caloric irrigations (ENG) and rotational chair-generated sinusoidal harmonic accelerations (SHA), and computerized dynamic platform posturography (CDP) at preoperative, 1-month, 4-month, 1-year and 2-year postimplantation visits. CI was carried out without respect to the preoperative vestibular function test results. Results: Specifically, 86 patients were entered into the study after informed consent. For the group as a whole, pair wise comparisons revealed few significant differences between preoperative and postoperative values for VOR testing (ENG and SHA) at any of the follow-up intervals. Likewise, DHI testing was also unchanged except for significant reductions (improvements) in the emotional subcategory scores at both the 4-month and 1-year intervals. CDP results demonstrated substantial improvements in postural sway in the vestibular conditions (5 and 6) as well as composite scores with the device "off" and "on" at the 1-month, 4-month, 1-year, and 2-year intervals. Device activation appeared to improve postural stability in some conditions. Excluding those patients with pre-operative areflexic or hyporeflexic responses in the implanted ear (total [warm + cool] caloric response ≤ 15 deg/s), substantial reductions (≥221 deg/s maximum slow phase velocity) in total caloric response were observed for 8 (29%) patients at the 4-month interval. These persisted throughout the study period. These changes were accompanied by significant low frequency phase changes on SHA testing confirming a VOR insult. Of interest, no significant changes were detected in the DHI or CDP, and there were no effects of age, sex, device manufacturer, or etiology of hearing loss (HL) for these patients. Conclusions: Unilateral CI rarely results in significant adverse effects on the vestibular system as measured by the DHI, ENG, SHA, and CDP. On the contrary, patients that underwent CI experienced significant improvements in the objective measures of postural stability as measured by CDP. Device activation in music appeared to have an additional positive effect on postural stability during CDP testing. Although VOR testing demonstrated some decreases in response, patients did not suffer from disabling vestibular effects following CI. The mechanism underlying these findings remains speculative. These findings should be considered in counseling patients about CI.

AB - Objectives/Hypothesis: Cochlear implantation (CI) carries with it the potential risk for vestibular system insult or stimulation with resultant dysfunction. As candidate profiles continue to evolve and with the recent development of bilateral CI, understanding the significance of this risk takes on an increasing importance. Study Design: Between 1997 to 2001, a prospective observational study was carried out in a tertiary care medical center to assess the effects of unilateral CI on the vestibular system. Methods: Assessment was performed using the dizziness handicap inventory (DHI), vestibulo-ocular reflex (VOR) testing using both alternate bithermal caloric irrigations (ENG) and rotational chair-generated sinusoidal harmonic accelerations (SHA), and computerized dynamic platform posturography (CDP) at preoperative, 1-month, 4-month, 1-year and 2-year postimplantation visits. CI was carried out without respect to the preoperative vestibular function test results. Results: Specifically, 86 patients were entered into the study after informed consent. For the group as a whole, pair wise comparisons revealed few significant differences between preoperative and postoperative values for VOR testing (ENG and SHA) at any of the follow-up intervals. Likewise, DHI testing was also unchanged except for significant reductions (improvements) in the emotional subcategory scores at both the 4-month and 1-year intervals. CDP results demonstrated substantial improvements in postural sway in the vestibular conditions (5 and 6) as well as composite scores with the device "off" and "on" at the 1-month, 4-month, 1-year, and 2-year intervals. Device activation appeared to improve postural stability in some conditions. Excluding those patients with pre-operative areflexic or hyporeflexic responses in the implanted ear (total [warm + cool] caloric response ≤ 15 deg/s), substantial reductions (≥221 deg/s maximum slow phase velocity) in total caloric response were observed for 8 (29%) patients at the 4-month interval. These persisted throughout the study period. These changes were accompanied by significant low frequency phase changes on SHA testing confirming a VOR insult. Of interest, no significant changes were detected in the DHI or CDP, and there were no effects of age, sex, device manufacturer, or etiology of hearing loss (HL) for these patients. Conclusions: Unilateral CI rarely results in significant adverse effects on the vestibular system as measured by the DHI, ENG, SHA, and CDP. On the contrary, patients that underwent CI experienced significant improvements in the objective measures of postural stability as measured by CDP. Device activation in music appeared to have an additional positive effect on postural stability during CDP testing. Although VOR testing demonstrated some decreases in response, patients did not suffer from disabling vestibular effects following CI. The mechanism underlying these findings remains speculative. These findings should be considered in counseling patients about CI.

KW - Cochlear implant

KW - Dizziness

KW - Electronystagmography

KW - Platform posturography

KW - Rotary chair

KW - Vestibular

UR - http://www.scopus.com/inward/record.url?scp=5044221188&partnerID=8YFLogxK

M3 - Article

VL - 114

SP - 1

EP - 22

JO - Laryngoscope

JF - Laryngoscope

SN - 0023-852X

IS - 10 II

ER -

Buchman C, Joy J, Hodges A, Telischi FF, Balkany TJ. Vestibular effects of cochlear implantation. Laryngoscope. 2004 Oct 1;114(10 II):1-22.