TY - JOUR
T1 - VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway
T2 - Implications for vasculogenic mimicry
AU - Hess, Angela R.
AU - Seftor, Elisabeth A.
AU - Gruman, Lynn M.
AU - Kinch, Michael S.
AU - Seftor, Richard E.B.
AU - Hendrix, Mary J.C.
PY - 2006/2
Y1 - 2006/2
N2 - The formation of matrix-rich, vasculogenic-like networks, termed vasculogenic mimicry (VM), is a unique process characteristic of highly aggressive melanoma cells found to express genes previously thought to be exclusively associated with endothelial and epithelial cells. This study contributes new observations demonstrating that VE-cadherin can regulate the expression of EphA2 at the cell membrane by mediating its ability to become phosphorylated through interactions with its membrane bound ligand, ephrin-A1. VE-cadherin and EphA2 were also found to be colocalized in cell-cell adhesion junctions, both in vitro and in vivo. Immunoprecipitation studies revealed that EphA2 and VE-cadherin could interact, directly and/or indirectly, during VM. Furthermore, there was no change in the colocalization of EphA2 and VE-cadherin at cell-cell adhesion sites when EphA2 was phosphorylated on lyrosine residues. Although transient knockout of EphA2 expression did not alter VE-cadherin localization, transient knockout of VE-cadherin expression resulted in the reorganization of EphA2 on the cells' surface, an accumulation of EphA2 in the cytoplasm, and subsequent dephosphorylation of EphA2. Collectively, these results suggest that VE-cadherin and EphA2 act in a coordinated manner as a key regulatory element in the process of melanoma VM and illuminate a novel signaling pathway that could be potentially exploited for therapeutic intervention.
AB - The formation of matrix-rich, vasculogenic-like networks, termed vasculogenic mimicry (VM), is a unique process characteristic of highly aggressive melanoma cells found to express genes previously thought to be exclusively associated with endothelial and epithelial cells. This study contributes new observations demonstrating that VE-cadherin can regulate the expression of EphA2 at the cell membrane by mediating its ability to become phosphorylated through interactions with its membrane bound ligand, ephrin-A1. VE-cadherin and EphA2 were also found to be colocalized in cell-cell adhesion junctions, both in vitro and in vivo. Immunoprecipitation studies revealed that EphA2 and VE-cadherin could interact, directly and/or indirectly, during VM. Furthermore, there was no change in the colocalization of EphA2 and VE-cadherin at cell-cell adhesion sites when EphA2 was phosphorylated on lyrosine residues. Although transient knockout of EphA2 expression did not alter VE-cadherin localization, transient knockout of VE-cadherin expression resulted in the reorganization of EphA2 on the cells' surface, an accumulation of EphA2 in the cytoplasm, and subsequent dephosphorylation of EphA2. Collectively, these results suggest that VE-cadherin and EphA2 act in a coordinated manner as a key regulatory element in the process of melanoma VM and illuminate a novel signaling pathway that could be potentially exploited for therapeutic intervention.
KW - EphA2
KW - Melanoma
KW - VE-cadherin
KW - Vasculogenic mimicry
UR - http://www.scopus.com/inward/record.url?scp=33644645280&partnerID=8YFLogxK
U2 - 10.4161/cbt.5.2.2510
DO - 10.4161/cbt.5.2.2510
M3 - Article
C2 - 16481735
AN - SCOPUS:33644645280
SN - 1538-4047
VL - 5
SP - 228
EP - 233
JO - Cancer Biology and Therapy
JF - Cancer Biology and Therapy
IS - 2
ER -