TY - JOUR
T1 - Vascularized Brain Assembloids With Enhanced Cellular Complexity Provide Insights Into the Cellular Deficits of Tauopathy
AU - Sun, Xiaohuan
AU - Kofman, Simeon
AU - Ogbolu, Victor C.
AU - Karch, Celeste M.
AU - Ibric, Larisa
AU - Qiang, Liang
N1 - Publisher Copyright:
© The Author(s) 2023. Published by Oxford University Press. All rights reserved.
PY - 2024/2
Y1 - 2024/2
N2 - Advanced technologies have enabled the engineering of self-organized 3-dimensional (3D) cellular structures from human induced pluripotent stem cells (hiPSCs), namely organoids, which recapitulate some key features of tissue development and functions of the human central nervous system (CNS). While hiPSC-derived 3D CNS organoids hold promise in providing a human-specific platform for studying CNS development and diseases, most of them do not incorporate the full range of implicated cell types, including vascular cell components and microglia, limiting their ability to accurately recreate the CNS environment and their utility in the study of certain aspects of the disease. Here we have developed a novel approach, called vascularized brain assembloids, for constructing hiPSC-derived 3D CNS structures with a higher level of cellular complexity. This is achieved by integrating forebrain organoids with common myeloid progenitors and phenotypically stabilized human umbilical vein endothelial cells (VeraVecs), which can be cultured and expanded in serum-free conditions. Compared with organoids, these assembloids exhibited enhanced neuroepithelial proliferation, advanced astrocytic maturation, and increased synapse numbers. Strikingly, the assembloids derived from hiPSCs harboring the tauP301S mutation exhibited increased levels of total tau and phosphorylated tau, along with a higher proportion of rod-like microglia-like cells and enhanced astrocytic activation, when compared to the assembloids derived from isogenic hiPSCs. Additionally, the tauP301S assembloids showed an altered profile of neuroinflammatory cytokines. This innovative assembloid technology serves as a compelling proof-of-concept model, opening new avenues for unraveling the intricate complexities of the human brain and accelerating progress in the development of effective treatments for neurological disorders.
AB - Advanced technologies have enabled the engineering of self-organized 3-dimensional (3D) cellular structures from human induced pluripotent stem cells (hiPSCs), namely organoids, which recapitulate some key features of tissue development and functions of the human central nervous system (CNS). While hiPSC-derived 3D CNS organoids hold promise in providing a human-specific platform for studying CNS development and diseases, most of them do not incorporate the full range of implicated cell types, including vascular cell components and microglia, limiting their ability to accurately recreate the CNS environment and their utility in the study of certain aspects of the disease. Here we have developed a novel approach, called vascularized brain assembloids, for constructing hiPSC-derived 3D CNS structures with a higher level of cellular complexity. This is achieved by integrating forebrain organoids with common myeloid progenitors and phenotypically stabilized human umbilical vein endothelial cells (VeraVecs), which can be cultured and expanded in serum-free conditions. Compared with organoids, these assembloids exhibited enhanced neuroepithelial proliferation, advanced astrocytic maturation, and increased synapse numbers. Strikingly, the assembloids derived from hiPSCs harboring the tauP301S mutation exhibited increased levels of total tau and phosphorylated tau, along with a higher proportion of rod-like microglia-like cells and enhanced astrocytic activation, when compared to the assembloids derived from isogenic hiPSCs. Additionally, the tauP301S assembloids showed an altered profile of neuroinflammatory cytokines. This innovative assembloid technology serves as a compelling proof-of-concept model, opening new avenues for unraveling the intricate complexities of the human brain and accelerating progress in the development of effective treatments for neurological disorders.
KW - brain assembloid
KW - brain organoid
KW - human induced pluripotent stem cells
KW - tauopathy
UR - http://www.scopus.com/inward/record.url?scp=85184729503&partnerID=8YFLogxK
U2 - 10.1093/stmcls/sxad086
DO - 10.1093/stmcls/sxad086
M3 - Article
C2 - 37995336
AN - SCOPUS:85184729503
SN - 1066-5099
VL - 42
SP - 107
EP - 115
JO - STEM CELLS
JF - STEM CELLS
IS - 2
ER -