Abstract
Background: When applying genomic medicine to a rare disease patient, the primary goal is to identify one or more genomic variants that may explain the patient's phenotypes. Typically, this is done through annotation, filtering, and then prioritization of variants for manual curation. However, prioritization of variants in rare disease patients remains a challenging task due to the high degree of variability in phenotype presentation and molecular source of disease. Thus, methods that can identify and/or prioritize variants to be clinically reported in the presence of such variability are of critical importance. Methods: We tested the application of classification algorithms that ingest variant annotations along with phenotype information for predicting whether a variant will ultimately be clinically reported and returned to a patient. To test the classifiers, we performed a retrospective study on variants that were clinically reported to 237 patients in the Undiagnosed Diseases Network. Results: We treated the classifiers as variant prioritization systems and compared them to four variant prioritization algorithms and two single-measure controls. We showed that the trained classifiers outperformed all other tested methods with the best classifiers ranking 72% of all reported variants and 94% of reported pathogenic variants in the top 20. Conclusions: We demonstrated how freely available binary classification algorithms can be used to prioritize variants even in the presence of real-world variability. Furthermore, these classifiers outperformed all other tested methods, suggesting that they may be well suited for working with real rare disease patient datasets.
Original language | English |
---|---|
Article number | 496 |
Journal | BMC bioinformatics |
Volume | 20 |
Issue number | 1 |
DOIs | |
State | Published - Oct 15 2019 |
Keywords
- Binary classification
- Clinical genome sequencing
- Variant prioritization
Fingerprint
Dive into the research topics of 'VarSight: Prioritizing clinically reported variants with binary classification algorithms'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: BMC bioinformatics, Vol. 20, No. 1, 496, 15.10.2019.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - VarSight
T2 - Prioritizing clinically reported variants with binary classification algorithms
AU - Holt, James M.
AU - Wilk, Brandon
AU - Birch, Camille L.
AU - Brown, Donna M.
AU - Gajapathy, Manavalan
AU - Moss, Alexander C.
AU - Sosonkina, Nadiya
AU - Wilk, Melissa A.
AU - Anderson, Julie A.
AU - Harris, Jeremy M.
AU - Kelly, Jacob M.
AU - Shaterferdosian, Fariba
AU - Uno-Antonison, Angelina E.
AU - Weborg, Arthur
AU - Acosta, Maria T.
AU - Adam, Margaret
AU - Adams, David R.
AU - Agrawal, Pankaj B.
AU - Alejandro, Mercedes E.
AU - Allard, Patrick
AU - Alvey, Justin
AU - Amendola, Laura
AU - Andrews, Ashley
AU - Ashley, Euan A.
AU - Azamian, Mahshid S.
AU - Bacino, Carlos A.
AU - Bademci, Guney
AU - Baker, Eva
AU - Balasubramanyam, Ashok
AU - Baldridge, Dustin
AU - Bale, Jim
AU - Bamshad, Michael
AU - Barbouth, Deborah
AU - Batzli, Gabriel F.
AU - Bayrak-Toydemir, Pinar
AU - Beck, Anita
AU - Beggs, Alan H.
AU - Bejerano, Gill
AU - Bellen, Hugo J.
AU - Bennet, Jimmy
AU - Berg-Rood, Beverly
AU - Bernier, Raphael
AU - Bernstein, Jonathan A.
AU - Berry, Gerard T.
AU - Bican, Anna
AU - Bivona, Stephanie
AU - Blue, Elizabeth
AU - Bohnsack, John
AU - Bonnenmann, Carsten
AU - Bonner, Devon
AU - Botto, Lorenzo
AU - Briere, Lauren C.
AU - Brokamp, Elly
AU - Burke, Elizabeth A.
AU - Burrage, Lindsay C.
AU - Butte, Manish J.
AU - Byers, Peter
AU - Carey, John
AU - Carrasquillo, Olveen
AU - Chang, Ta Chen Peter
AU - Chanprasert, Sirisak
AU - Chao, Hsiao Tuan
AU - Clark, Gary D.
AU - Coakley, Terra R.
AU - Cobban, Laurel A.
AU - Cogan, Joy D.
AU - Cole, F. Sessions
AU - Colley, Heather A.
AU - Cooper, Cynthia M.
AU - Cope, Heidi
AU - Craigen, William J.
AU - Cunningham, Michael
AU - D'Souza, Precilla
AU - Dai, Hongzheng
AU - Dasari, Surendra
AU - Davids, Mariska
AU - Dayal, Jyoti G.
AU - Dell'Angelica, Esteban C.
AU - Dhar, Shweta U.
AU - Dipple, Katrina
AU - Doherty, Daniel
AU - Dorrani, Naghmeh
AU - Douine, Emilie D.
AU - Draper, David D.
AU - Duncan, Laura
AU - Earl, Dawn
AU - Eckstein, David J.
AU - Emrick, Lisa T.
AU - Eng, Christine M.
AU - Esteves, Cecilia
AU - Estwick, Tyra
AU - Fernandez, Liliana
AU - Ferreira, Carlos
AU - Fieg, Elizabeth L.
AU - Fisher, Paul G.
AU - Fogel, Brent L.
AU - Forghani, Irman
AU - Fresard, Laure
AU - Gahl, William A.
AU - Glass, Ian
AU - Godfrey, Rena A.
AU - Golden-Grant, Katie
AU - Goldman, Alica M.
AU - Goldstein, David B.
AU - Grajewski, Alana
AU - Groden, Catherine A.
AU - Gropman, Andrea L.
AU - Hahn, Sihoun
AU - Hamid, Rizwan
AU - Hanchard, Neil A.
AU - Hayes, Nichole
AU - High, Frances
AU - Hing, Anne
AU - Hisama, Fuki M.
AU - Holm, Ingrid A.
AU - Hom, Jason
AU - Horike-Pyne, Martha
AU - Huang, Alden
AU - Huang, Yong
AU - Isasi, Rosario
AU - Jamal, Fariha
AU - Jarvik, Gail P.
AU - Jarvik, Jeffrey
AU - Jayadev, Suman
AU - Jiang, Yong Hui
AU - Johnston, Jean M.
AU - Karaviti, Lefkothea
AU - Kelley, Emily G.
AU - Kiley, Dana
AU - Kohane, Isaac S.
AU - Kohler, Jennefer N.
AU - Krakow, Deborah
AU - Krasnewich, Donna M.
AU - Korrick, Susan
AU - Koziura, Mary
AU - Krier, Joel B.
AU - Lalani, Seema R.
AU - Lam, Byron
AU - Lam, Christina
AU - Lanpher, Brendan C.
AU - Lanza, Ian R.
AU - Lau, C. Christopher
AU - Leblanc, Kimberly
AU - Lee, Brendan H.
AU - Lee, Hane
AU - Levitt, Roy
AU - Lewis, Richard A.
AU - Lincoln, Sharyn A.
AU - Liu, Pengfei
AU - Liu, Xue Zhong
AU - Longo, Nicola
AU - Loo, Sandra K.
AU - Loscalzo, Joseph
AU - Maas, Richard L.
AU - Macnamara, Ellen F.
AU - MacRae, Calum A.
AU - Maduro, Valerie V.
AU - Majcherska, Marta M.
AU - Malicdan, May Christine V.
AU - Mamounas, Laura A.
AU - Manolio, Teri A.
AU - Mao, Rong
AU - Maravilla, Kenneth
AU - Markello, Thomas C.
AU - Marom, Ronit
AU - Marth, Gabor
AU - Martin, Beth A.
AU - Martin, Martin G.
AU - Martínez-Agosto, Julian A.
AU - Marwaha, Shruti
AU - McCauley, Jacob
AU - McConkie-Rosell, Allyn
AU - McCormack, Colleen E.
AU - McCray, Alexa T.
AU - Mefford, Heather
AU - Merritt, J. Lawrence
AU - Might, Matthew
AU - Mirzaa, Ghayda
AU - Morava-Kozicz, Eva
AU - Moretti, Paolo M.
AU - Morimoto, Marie
AU - Mulvihill, John J.
AU - Murdock, David R.
AU - Nath, Avi
AU - Nelson, Stan F.
AU - Newman, John H.
AU - Nicholas, Sarah K.
AU - Nickerson, Deborah
AU - Novacic, Donna
AU - Oglesbee, Devin
AU - Orengo, James P.
AU - Pace, Laura
AU - Pak, Stephen
AU - Pallais, J. Carl
AU - Palmer, Christina G.S.
AU - Papp, Jeanette C.
AU - Parker, Neil H.
AU - Phillips, John A.
AU - Posey, Jennifer E.
AU - Postlethwait, John H.
AU - Potocki, Lorraine
AU - Pusey, Barbara N.
AU - Quinlan, Aaron
AU - Raskind, Wendy
AU - Raja, Archana N.
AU - Renteria, Genecee
AU - Reuter, Chloe M.
AU - Rives, Lynette
AU - Robertson, Amy K.
AU - Rodan, Lance H.
AU - Rosenfeld, Jill A.
AU - Rowley, Robb K.
AU - Ruzhnikov, Maura
AU - Sacco, Ralph
AU - Sampson, Jacinda B.
AU - Samson, Susan L.
AU - Saporta, Mario
AU - Scott, C. Ron
AU - Schaechter, Judy
AU - Schedl, Timothy
AU - Schoch, Kelly
AU - Scott, Daryl A.
AU - Shakachite, Lisa
AU - Sharma, Prashant
AU - Shashi, Vandana
AU - Shin, Jimann
AU - Signer, Rebecca
AU - Sillari, Catherine H.
AU - Silverman, Edwin K.
AU - Sinsheimer, Janet S.
AU - Sisco, Kathy
AU - Smith, Kevin S.
AU - Solnica-Krezel, Lilianna
AU - Spillmann, Rebecca C.
AU - Stoler, Joan M.
AU - Stong, Nicholas
AU - Sullivan, Jennifer A.
AU - Sun, Angela
AU - Sutton, Shirley
AU - Sweetser, David A.
AU - Sybert, Virginia
AU - Tabor, Holly K.
AU - Tamburro, Cecelia P.
AU - Tan, Queenie K.G.
AU - Tekin, Mustafa
AU - Telischi, Fred
AU - Thorson, Willa
AU - Tifft, Cynthia J.
AU - Toro, Camilo
AU - Tran, Alyssa A.
AU - Urv, Tiina K.
AU - Velinder, Matt
AU - Viskochil, Dave
AU - Vogel, Tiphanie P.
AU - Wahl, Colleen E.
AU - Wallace, Stephanie
AU - Walley, Nicole M.
AU - Walsh, Chris A.
AU - Walker, Melissa
AU - Wambach, Jennifer
AU - Wan, Jijun
AU - Wang, Lee Kai
AU - Wangler, Michael F.
AU - Ward, Patricia A.
AU - Wegner, Daniel
AU - Wener, Mark
AU - Westerfield, Monte
AU - Wheeler, Matthew T.
AU - Wise, Anastasia L.
AU - Wolfe, Lynne A.
AU - Woods, Jeremy D.
AU - Yamamoto, Shinya
AU - Yang, John
AU - Yoon, Amanda J.
AU - Yu, Guoyun
AU - Zastrow, Diane B.
AU - Zhao, Chunli
AU - Zuchner, Stephan
AU - Worthey, Elizabeth A.
N1 - Publisher Copyright: © 2019 The Author(s).
PY - 2019/10/15
Y1 - 2019/10/15
N2 - Background: When applying genomic medicine to a rare disease patient, the primary goal is to identify one or more genomic variants that may explain the patient's phenotypes. Typically, this is done through annotation, filtering, and then prioritization of variants for manual curation. However, prioritization of variants in rare disease patients remains a challenging task due to the high degree of variability in phenotype presentation and molecular source of disease. Thus, methods that can identify and/or prioritize variants to be clinically reported in the presence of such variability are of critical importance. Methods: We tested the application of classification algorithms that ingest variant annotations along with phenotype information for predicting whether a variant will ultimately be clinically reported and returned to a patient. To test the classifiers, we performed a retrospective study on variants that were clinically reported to 237 patients in the Undiagnosed Diseases Network. Results: We treated the classifiers as variant prioritization systems and compared them to four variant prioritization algorithms and two single-measure controls. We showed that the trained classifiers outperformed all other tested methods with the best classifiers ranking 72% of all reported variants and 94% of reported pathogenic variants in the top 20. Conclusions: We demonstrated how freely available binary classification algorithms can be used to prioritize variants even in the presence of real-world variability. Furthermore, these classifiers outperformed all other tested methods, suggesting that they may be well suited for working with real rare disease patient datasets.
AB - Background: When applying genomic medicine to a rare disease patient, the primary goal is to identify one or more genomic variants that may explain the patient's phenotypes. Typically, this is done through annotation, filtering, and then prioritization of variants for manual curation. However, prioritization of variants in rare disease patients remains a challenging task due to the high degree of variability in phenotype presentation and molecular source of disease. Thus, methods that can identify and/or prioritize variants to be clinically reported in the presence of such variability are of critical importance. Methods: We tested the application of classification algorithms that ingest variant annotations along with phenotype information for predicting whether a variant will ultimately be clinically reported and returned to a patient. To test the classifiers, we performed a retrospective study on variants that were clinically reported to 237 patients in the Undiagnosed Diseases Network. Results: We treated the classifiers as variant prioritization systems and compared them to four variant prioritization algorithms and two single-measure controls. We showed that the trained classifiers outperformed all other tested methods with the best classifiers ranking 72% of all reported variants and 94% of reported pathogenic variants in the top 20. Conclusions: We demonstrated how freely available binary classification algorithms can be used to prioritize variants even in the presence of real-world variability. Furthermore, these classifiers outperformed all other tested methods, suggesting that they may be well suited for working with real rare disease patient datasets.
KW - Binary classification
KW - Clinical genome sequencing
KW - Variant prioritization
UR - http://www.scopus.com/inward/record.url?scp=85073430239&partnerID=8YFLogxK
U2 - 10.1186/s12859-019-3026-8
DO - 10.1186/s12859-019-3026-8
M3 - Article
C2 - 31615419
AN - SCOPUS:85073430239
SN - 1471-2105
VL - 20
JO - BMC bioinformatics
JF - BMC bioinformatics
IS - 1
M1 - 496
ER -