Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV

D. L. Bark, B. Johnson, D. Garrity, L. P. Dasi

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

Cardiovascular development is influenced by the flow-induced stress environment originating from cardiac biomechanics. To characterize the stress environment, it is necessary to quantify flow and pressure. Here, we quantify the flow field in a developing zebrafish heart during the looping stage through micro-particle imaging velocimetry and by analyzing spatiotemporal plots. We further build upon previous methods to noninvasively quantify the pressure field at a low Reynolds number using flow field data for the first time, while also comparing the impact of viscosity models. Through this method, we show that the atrium builds up pressure to ~0.25 mmHg relative to the ventricle during atrial systole and that atrial expansion creates a pressure difference of ~0.15 mmHg across the atrium, resulting in efficient cardiac pumping. With these techniques, it is possible to noninvasively fully characterize hemodynamics during heart development.

Original languageEnglish
Pages (from-to)50-55
Number of pages6
JournalJournal of Biomechanics
Volume50
DOIs
StatePublished - Jan 4 2017

Keywords

  • Blood flow
  • Development
  • Heart
  • Pressure
  • Zebrafish

Fingerprint Dive into the research topics of 'Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV'. Together they form a unique fingerprint.

  • Cite this