2 Scopus citations

Abstract

Value iteration is a popular algorithm for solving POMDPs. However, it is inefficient in practice. The primary reason is that it needs to conduct value updates for all the belief states in the (continuous) belief space. In this paper, we study value iteration working with a subset of the belief space, i.e., it conducts value updates only for belief states in the subset. We present a way to select belief subset and describe an algorithm to conduct value iteration over the selected subset. The algorithm is attractive in that it works with belief subset but also retains the quality of the generated values. Given a POMDP, we show how to a priori determine whether the selected subset is a proper subset of belief space. If this is the case, the algorithm carries the advantages of representation in space and efficiency in time.

Original languageEnglish
Pages307-312
Number of pages6
StatePublished - 2002
Event18th National Conference on Artificial Intelligence (AAAI-02), 14th Innovative Applications of Artificial Intelligence Conference (IAAI-02) - Edmonton, Alta., Canada
Duration: Jul 28 2002Aug 1 2002

Conference

Conference18th National Conference on Artificial Intelligence (AAAI-02), 14th Innovative Applications of Artificial Intelligence Conference (IAAI-02)
Country/TerritoryCanada
CityEdmonton, Alta.
Period07/28/0208/1/02

Fingerprint

Dive into the research topics of 'Value iteration working with belief subset'. Together they form a unique fingerprint.

Cite this