TY - JOUR
T1 - Validation of an artificial intelligence platform for the guidance of safe laparoscopic cholecystectomy
AU - Laplante, Simon
AU - Namazi, Babak
AU - Kiani, Parmiss
AU - Hashimoto, Daniel A.
AU - Alseidi, Adnan
AU - Pasten, Mauricio
AU - Brunt, L. Michael
AU - Gill, Sujata
AU - Davis, Brian
AU - Bloom, Matthew
AU - Pernar, Luise
AU - Okrainec, Allan
AU - Madani, Amin
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023/3
Y1 - 2023/3
N2 - Background: Many surgical adverse events, such as bile duct injuries during laparoscopic cholecystectomy (LC), occur due to errors in visual perception and judgment. Artificial intelligence (AI) can potentially improve the quality and safety of surgery, such as through real-time intraoperative decision support. GoNoGoNet is a novel AI model capable of identifying safe (“Go”) and dangerous (“No-Go”) zones of dissection on surgical videos of LC. Yet, it is unknown how GoNoGoNet performs in comparison to expert surgeons. This study aims to evaluate the GoNoGoNet’s ability to identify Go and No-Go zones compared to an external panel of expert surgeons. Methods: A panel of high-volume surgeons from the SAGES Safe Cholecystectomy Task Force was recruited to draw free-hand annotations on frames of prospectively collected videos of LC to identify the Go and No-Go zones. Expert consensus on the location of Go and No-Go zones was established using Visual Concordance Test pixel agreement. Identification of Go and No-Go zones by GoNoGoNet was compared to expert-derived consensus using mean F1 Dice Score, and pixel accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Results: A total of 47 frames from 25 LC videos, procured from 3 countries and 9 surgeons, were annotated simultaneously by an expert panel of 6 surgeons and GoNoGoNet. Mean (± standard deviation) F1 Dice score were 0.58 (0.22) and 0.80 (0.12) for Go and No-Go zones, respectively. Mean (± standard deviation) accuracy, sensitivity, specificity, PPV and NPV for the Go zones were 0.92 (0.05), 0.52 (0.24), 0.97 (0.03), 0.70 (0.21), and 0.94 (0.04) respectively. For No-Go zones, these metrics were 0.92 (0.05), 0.80 (0.17), 0.95 (0.04), 0.84 (0.13) and 0.95 (0.05), respectively. Conclusions: AI can be used to identify safe and dangerous zones of dissection within the surgical field, with high specificity/PPV for Go zones and high sensitivity/NPV for No-Go zones. Overall, model prediction was better for No-Go zones compared to Go zones. This technology may eventually be used to provide real-time guidance and minimize the risk of adverse events.
AB - Background: Many surgical adverse events, such as bile duct injuries during laparoscopic cholecystectomy (LC), occur due to errors in visual perception and judgment. Artificial intelligence (AI) can potentially improve the quality and safety of surgery, such as through real-time intraoperative decision support. GoNoGoNet is a novel AI model capable of identifying safe (“Go”) and dangerous (“No-Go”) zones of dissection on surgical videos of LC. Yet, it is unknown how GoNoGoNet performs in comparison to expert surgeons. This study aims to evaluate the GoNoGoNet’s ability to identify Go and No-Go zones compared to an external panel of expert surgeons. Methods: A panel of high-volume surgeons from the SAGES Safe Cholecystectomy Task Force was recruited to draw free-hand annotations on frames of prospectively collected videos of LC to identify the Go and No-Go zones. Expert consensus on the location of Go and No-Go zones was established using Visual Concordance Test pixel agreement. Identification of Go and No-Go zones by GoNoGoNet was compared to expert-derived consensus using mean F1 Dice Score, and pixel accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Results: A total of 47 frames from 25 LC videos, procured from 3 countries and 9 surgeons, were annotated simultaneously by an expert panel of 6 surgeons and GoNoGoNet. Mean (± standard deviation) F1 Dice score were 0.58 (0.22) and 0.80 (0.12) for Go and No-Go zones, respectively. Mean (± standard deviation) accuracy, sensitivity, specificity, PPV and NPV for the Go zones were 0.92 (0.05), 0.52 (0.24), 0.97 (0.03), 0.70 (0.21), and 0.94 (0.04) respectively. For No-Go zones, these metrics were 0.92 (0.05), 0.80 (0.17), 0.95 (0.04), 0.84 (0.13) and 0.95 (0.05), respectively. Conclusions: AI can be used to identify safe and dangerous zones of dissection within the surgical field, with high specificity/PPV for Go zones and high sensitivity/NPV for No-Go zones. Overall, model prediction was better for No-Go zones compared to Go zones. This technology may eventually be used to provide real-time guidance and minimize the risk of adverse events.
KW - Artificial intelligence
KW - Bile duct injury
KW - Cholecystectomy
KW - Deep learning
KW - Deep neural network
KW - Machine learning
UR - http://www.scopus.com/inward/record.url?scp=85135314973&partnerID=8YFLogxK
U2 - 10.1007/s00464-022-09439-9
DO - 10.1007/s00464-022-09439-9
M3 - Article
C2 - 35918549
AN - SCOPUS:85135314973
SN - 0930-2794
VL - 37
SP - 2260
EP - 2268
JO - Surgical endoscopy
JF - Surgical endoscopy
IS - 3
ER -