Abstract

The diversity of immunoglobulin (Ig) and T cell receptor (TCR) genes available to form the lymphocyte repertoire has the capacity to produce a broad array of both protective and harmful specificities. In type 1 diabetes (T1D), the presence of antibodies to insulin and other islet antigens predicts disease development in both mice and humans, and demonstrate that immune tolerance is lost early in the disease process. Anti-insulin T cells isolated from T1D-prone non-obese diabetic (NOD) mice use polymorphic TCRα chains, suggesting that the available T cell repertoire is altered in these autoimmune mice. To probe whether insulin-binding B cells also possess polymorphic V genes, Ig light chains were isolated and sequenced from NOD mice that harbor an Ig heavy chain transgene. Three insulin-binding Vκ genes were identified, all of which were polymorphic to the closest germline sequence matches present in the GenBank database. Additional analysis of over 300 light chain sequences from multiple sources, including germline DNA, shows that polymorphisms are spread throughout the entire NOD Igκ locus, as these polymorphic sequences represent 43 distinct Vκ genes which belong to 14 Vκ families. Database searches reveal that a majority of polymorphic Vκ genes identified in NOD are identical to Vκ genes isolated from SLE-prone NZBxNZW F1 or MRL strains of mice, suggesting that a shared Igκ haplotype may be present. Predicted amino acid changes preferentially occur in CDR, and thus could alter antigen recognition by the germline B cell repertoire of autoimmune versus non-autoimmune mouse strains.

Original languageEnglish
Pages (from-to)507-520
Number of pages14
JournalImmunogenetics
Volume62
Issue number8
DOIs
StatePublished - Aug 2010

Keywords

  • Autoimmunity
  • B cell
  • Immunoglobulin kappa
  • Light chain
  • Type 1 diabetes

Fingerprint

Dive into the research topics of 'Vκ polymorphisms in NOD mice are spread throughout the entire immunoglobulin kappa locus and are shared by other autoimmune strains'. Together they form a unique fingerprint.

Cite this