Use of intraoperative mapping to optimize surgical ablation of atrial flutter

Shigeo Yamauchi, Richard B. Schuessler, Tomohide Kawamoto, Todd A. Shuman, John P. Boineau, James L. Cox

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


The purpose of this study was to develop a surgical treatment for atrial flutter using intraoperative activation sequence mapping to minimize the surgical procedure necessary to ablate the flutter. A canine model (n = 10) of left atrial enlargement was developed by creating a shunt from the left subclavian artery to the left superior pulmonary vein. Sustained atrial flutter was easily induced in this model. The flutter consisted of a single reentrant circuit that rotated around one or two anatomic obstacles linked by a region of functional block. Epicardial templates, consisting of 252 bipolar electrodes, were used to record activation time maps. After localization of the reentrant circuit, surgical incisions were placed to interrupt the pathways. In all 10 animals, flutter could be induced and intraoperative mapping localized the reentrant circuit. Seven circuits were in the right atrium and three were in the left atrium. The operation ablated all of the preoperative circuits. However, in 5 of the animals, flutter originating from a new circuit could be induced. Activation sequence mapping before and after operation demonstrates that there are multiple potential reentrant pathways in this canine model of atrial futter. Therefore, all potential pathways must be surgically interrupted to prevent inducibility of atrial flutter.

Original languageEnglish
Pages (from-to)337-342
Number of pages6
JournalThe Annals of thoracic surgery
Issue number2
StatePublished - Aug 1993


Dive into the research topics of 'Use of intraoperative mapping to optimize surgical ablation of atrial flutter'. Together they form a unique fingerprint.

Cite this