Abstract
Imaging a phantom of known dimensions is a widely used and simple method for calibrating MRI gradient strength. However, full-range characterization of gradient response is not achievable using this approach. Measurement of the apparent diffusion coefficient of a liquid with known diffusivity allows for calibration of gradient amplitudes across a wider dynamic range. An important caveat is that the temperature dependence of the liquid's diffusion characteristics must be known, and the temperature of the calibration phantom must be recorded. In this report, we demonstrate that the diffusion coefficient of ethylene glycol is well described by Arrhenius-type behavior across the typical range of ambient MRI magnet temperatures. Because of ethylene glycol's utility as an NMR chemical-shift thermometer, the same 1H MR spectroscopy measurements that are used for gradient calibration also simultaneously "report" the sample temperature. The high viscosity of ethylene glycol makes it well-suited for assessing gradient performance in demanding diffusion-weighted imaging and spectroscopy sequences.
Original language | English |
---|---|
Pages (from-to) | 319-324 |
Number of pages | 6 |
Journal | Magnetic resonance in medicine |
Volume | 68 |
Issue number | 1 |
DOIs | |
State | Published - Jul 2012 |
Keywords
- Diffusion MRI
- Gradient calibration
- Quality assurance