TY - JOUR
T1 - Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference
AU - The Genetic FTD Initiative (GENFI)
AU - The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
AU - Young, Alexandra L.
AU - Marinescu, Razvan V.
AU - Oxtoby, Neil P.
AU - Bocchetta, Martina
AU - Yong, Keir
AU - Firth, Nicholas C.
AU - Cash, David M.
AU - Thomas, David L.
AU - Dick, Katrina M.
AU - Cardoso, Jorge
AU - van Swieten, John
AU - Borroni, Barbara
AU - Galimberti, Daniela
AU - Masellis, Mario
AU - Tartaglia, Maria Carmela
AU - Rowe, James B.
AU - Graff, Caroline
AU - Tagliavini, Fabrizio
AU - Frisoni, Giovanni B.
AU - Laforce, Robert
AU - Finger, Elizabeth
AU - de Mendonça, Alexandre
AU - Sorbi, Sandro
AU - Warren, Jason D.
AU - Crutch, Sebastian
AU - Fox, Nick C.
AU - Ourselin, Sebastien
AU - Schott, Jonathan M.
AU - Rohrer, Jonathan D.
AU - Alexander, Daniel C.
AU - Andersson, Christin
AU - Archetti, Silvana
AU - Arighi, Andrea
AU - Benussi, Luisa
AU - Binetti, Giuliano
AU - Black, Sandra
AU - Cosseddu, Maura
AU - Fallström, Marie
AU - Ferreira, Carlos
AU - Fenoglio, Chiara
AU - Freedman, Morris
AU - Fumagalli, Giorgio G.
AU - Gazzina, Stefano
AU - Ghidoni, Roberta
AU - Morris, John
AU - Raichle, Marc
AU - Paul, Steven
AU - Holtzman, Davie
AU - Ances, Beau
AU - Womack, Kyle
N1 - Publisher Copyright:
© 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique—Subtype and Stage Inference (SuStaIn)—able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer’s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 × 10−4) or temporal stage (p = 3.96 × 10−5). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine.
AB - The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique—Subtype and Stage Inference (SuStaIn)—able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer’s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 × 10−4) or temporal stage (p = 3.96 × 10−5). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine.
UR - http://www.scopus.com/inward/record.url?scp=85054898182&partnerID=8YFLogxK
U2 - 10.1038/s41467-018-05892-0
DO - 10.1038/s41467-018-05892-0
M3 - Article
C2 - 30323170
AN - SCOPUS:85054898182
SN - 2041-1723
VL - 9
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 4273
ER -