TY - JOUR
T1 - Ultra-high dose rate dosimetry
T2 - Challenges and opportunities for FLASH radiation therapy
AU - Romano, Francesco
AU - Bailat, Claude
AU - Jorge, Patrik Gonçalves
AU - Lerch, Michael Lloyd Franz
AU - Darafsheh, Arash
N1 - Publisher Copyright:
© 2022 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
PY - 2022/7
Y1 - 2022/7
N2 - The clinical translation of FLASH radiotherapy (RT) requires challenges related to dosimetry and beam monitoring of ultra-high dose rate (UHDR) beams to be addressed. Detectors currently in use suffer from saturation effects under UHDR regimes, requiring the introduction of correction factors. There is significant interest from the scientific community to identify the most reliable solutions and suitable experimental approaches for UHDR dosimetry. This interest is manifested through the increasing number of national and international projects recently proposed concerning UHDR dosimetry. Attaining the desired solutions and approaches requires further optimization of already established technologies as well as the investigation of novel radiation detection and dosimetry methods. New knowledge will also emerge to fill the gap in terms of validated protocols, assessing new dosimetric procedures and standardized methods. In this paper, we discuss the main challenges coming from the peculiar beam parameters characterizing UHDR beams for FLASH RT. These challenges vary considerably depending on the accelerator type and technique used to produce the relevant UHDR radiation environment. We also introduce some general considerations on how the different time structure in the production of the radiation beams, as well as the dose and dose-rate per pulse, can affect the detector response. Finally, we discuss the requirements that must characterize any proposed dosimeters for use in UDHR radiation environments. A detailed status of the current technology is provided, with the aim of discussing the detector features and their performance characteristics and/or limitations in UHDR regimes. We report on further developments for established detectors and novel approaches currently under investigation with a view to predict future directions in terms of dosimetry approaches, practical procedures, and protocols. Due to several on-going detector and dosimetry developments associated with UHDR radiation environment for FLASH RT it is not possible to provide a simple list of recommendations for the most suitable detectors for FLASH RT dosimetry. However, this article does provide the reader with a detailed description of the most up-to-date dosimetric approaches, and describes the behavior of the detectors operated under UHDR irradiation conditions and offers expert discussion on the current challenges which we believe are important and still need to be addressed in the clinical translation of FLASH RT.
AB - The clinical translation of FLASH radiotherapy (RT) requires challenges related to dosimetry and beam monitoring of ultra-high dose rate (UHDR) beams to be addressed. Detectors currently in use suffer from saturation effects under UHDR regimes, requiring the introduction of correction factors. There is significant interest from the scientific community to identify the most reliable solutions and suitable experimental approaches for UHDR dosimetry. This interest is manifested through the increasing number of national and international projects recently proposed concerning UHDR dosimetry. Attaining the desired solutions and approaches requires further optimization of already established technologies as well as the investigation of novel radiation detection and dosimetry methods. New knowledge will also emerge to fill the gap in terms of validated protocols, assessing new dosimetric procedures and standardized methods. In this paper, we discuss the main challenges coming from the peculiar beam parameters characterizing UHDR beams for FLASH RT. These challenges vary considerably depending on the accelerator type and technique used to produce the relevant UHDR radiation environment. We also introduce some general considerations on how the different time structure in the production of the radiation beams, as well as the dose and dose-rate per pulse, can affect the detector response. Finally, we discuss the requirements that must characterize any proposed dosimeters for use in UDHR radiation environments. A detailed status of the current technology is provided, with the aim of discussing the detector features and their performance characteristics and/or limitations in UHDR regimes. We report on further developments for established detectors and novel approaches currently under investigation with a view to predict future directions in terms of dosimetry approaches, practical procedures, and protocols. Due to several on-going detector and dosimetry developments associated with UHDR radiation environment for FLASH RT it is not possible to provide a simple list of recommendations for the most suitable detectors for FLASH RT dosimetry. However, this article does provide the reader with a detailed description of the most up-to-date dosimetric approaches, and describes the behavior of the detectors operated under UHDR irradiation conditions and offers expert discussion on the current challenges which we believe are important and still need to be addressed in the clinical translation of FLASH RT.
KW - FLASH
KW - dosimetry
KW - proton therapy
KW - radiotherapy
KW - ultra-high dose rate
UR - http://www.scopus.com/inward/record.url?scp=85129569920&partnerID=8YFLogxK
U2 - 10.1002/mp.15649
DO - 10.1002/mp.15649
M3 - Article
C2 - 35404484
AN - SCOPUS:85129569920
SN - 0094-2405
VL - 49
SP - 4912
EP - 4932
JO - Medical physics
JF - Medical physics
IS - 7
ER -