Cryptococcus neoformans is a pathogenic fungus surrounded by an elaborate polysaccharide capsule that is strictly required for its virulence in humans and other mammals. Nearly half of the sugar residues in the capsule are derived from UDP-glucuronic acid or its metabolites. To examine the role of these nucleotide sugars in C. neoformans, the gene encoding UDP-glucose dehydrogenase was disrupted. Mass spectrometry analysis of nucleotide sugar pools showed that the resulting mutant lacked both UDP-glucuronic acid and its downstream product, UDP-xylose, thus confirming the effect of the knockout and indicating that an alternate pathway for UDP-glucuronic acid production was not used. The mutant was dramatically affected by the lack of specific sugar donors, demonstrating altered cell integrity, temperature sensitivity, lack of growth in an animal model of cryptococcosis, and morphological defects. Additionally, the polysaccharide capsule could not be detected on the mutant cells, although the possibility remains that abbreviated forms of capsule components are made, possibly without proper surface display. The capsule defect is largely independent of the other observed changes, as cells that are acapsular because of mutations in other genes show lack of virulence but do not exhibit alterations in cell integrity, temperature sensitivity, or cellular morphology. All of the observed alterations were reversed by correction of the gene disruption.

Original languageEnglish
Pages (from-to)51669-51676
Number of pages8
JournalJournal of Biological Chemistry
Issue number49
StatePublished - Dec 3 2004


Dive into the research topics of 'UDP-glucose dehydrogenase plays multiple roles in the biology of the pathogenic fungus Cryptococcus neoformans'. Together they form a unique fingerprint.

Cite this