TY - JOUR
T1 - Tyrosine kinase inhibitors protect the salivary gland from radiation damage by inhibiting activation of protein kinase C-δ
AU - Wie, Sten M.
AU - Wellberg, Elizabeth
AU - Karam, Sana D.
AU - Reyland, Mary E.
N1 - Publisher Copyright:
©2017 AACR.
PY - 2017/9
Y1 - 2017/9
N2 - In patients undergoing irradiation (IR) therapy, injury to nontumor tissues can result in debilitating, and sometimes permanent, side effects. We have defined protein kinase C-δ (PKCδ) as a regulator of DNA damage–induced apoptosis and have shown that phosphorylation of PKCδ by c-Abl and c-Src activates its proapoptotic function. Here, we have explored the use of tyrosine kinase inhibitors (TKI) of c-Src and c-Abl to block activation of PKCδ for radioprotection of the salivary gland. Dasatinib, imatinib, and bosutinib all suppressed tyrosine phosphorylation of PKCδ and inhibited IR-induced apoptosis in vitro. To determine whether TKIs can provide radioprotection of salivary gland function in vivo, mice were treated with TKIs and a single or fractionated doses of irradiation. Delivery of dasatinib or imatinib within 3 hours of a single or fractionated dose of irradiation resulted in >75% protection of salivary gland function at 60 days. Continuous dosing with dasatinib extended protection to at least 5 months and correlated with histologic evidence of salivary gland acinar cell regeneration. Pretreatment with TKIs had no impact on clonogenic survival of head and neck squamous cell carcinoma (HNSCC) cells, and in mice harboring HNSCC cell–derived xenografts, combining dasatinib or imatinib with fractionated irradiation did not enhance tumor growth. Our studies indicate that TKIs may be useful clinically to protect nontumor tissue in HNC patients undergoing radiotherapy, without negatively impacting cancer treatment.
AB - In patients undergoing irradiation (IR) therapy, injury to nontumor tissues can result in debilitating, and sometimes permanent, side effects. We have defined protein kinase C-δ (PKCδ) as a regulator of DNA damage–induced apoptosis and have shown that phosphorylation of PKCδ by c-Abl and c-Src activates its proapoptotic function. Here, we have explored the use of tyrosine kinase inhibitors (TKI) of c-Src and c-Abl to block activation of PKCδ for radioprotection of the salivary gland. Dasatinib, imatinib, and bosutinib all suppressed tyrosine phosphorylation of PKCδ and inhibited IR-induced apoptosis in vitro. To determine whether TKIs can provide radioprotection of salivary gland function in vivo, mice were treated with TKIs and a single or fractionated doses of irradiation. Delivery of dasatinib or imatinib within 3 hours of a single or fractionated dose of irradiation resulted in >75% protection of salivary gland function at 60 days. Continuous dosing with dasatinib extended protection to at least 5 months and correlated with histologic evidence of salivary gland acinar cell regeneration. Pretreatment with TKIs had no impact on clonogenic survival of head and neck squamous cell carcinoma (HNSCC) cells, and in mice harboring HNSCC cell–derived xenografts, combining dasatinib or imatinib with fractionated irradiation did not enhance tumor growth. Our studies indicate that TKIs may be useful clinically to protect nontumor tissue in HNC patients undergoing radiotherapy, without negatively impacting cancer treatment.
UR - http://www.scopus.com/inward/record.url?scp=85029451697&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-17-0267
DO - 10.1158/1535-7163.MCT-17-0267
M3 - Article
C2 - 28637715
AN - SCOPUS:85029451697
SN - 1535-7163
VL - 16
SP - 1989
EP - 1998
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
IS - 9
ER -