Abstract

Ross River virus (RRV) and other alphaviruses cause chronic musculoskeletal syndromes that are associated with viral persistence, which suggests deficits in immune clearance mechanisms, including CD8+ T-cell responses. Here, we used a recombinant RRV-gp33 that expresses the immunodominant CD8+ T-cell epitope of lymphocytic choriomeningitis virus (LCMV) to directly compare responses with a virus, LCMV, that strongly induces antiviral CD8+ T cells. After footpad injection, we detected fewer gp33-specific CD8+ T cells in the draining lymph node (DLN) after RRV-gp33 than LCMV infection, despite similar viral RNA levels in the foot. However, less RRV RNA was detected in the DLN compared to LCMV, with RRV localizing principally to the subcapsular region and LCMV to the paracortical T-cell zones. Single-cell RNA-sequencing analysis of adoptively transferred gp33-specific transgenic CD8+ T cells showed rapid differentiation into effector cells after LCMV but not RRV infection. This defect in RRV-specific CD8+ T effector cell maturation was corrected by local blockade of type I interferon (IFN) signaling, which also resulted in increased RRV infection in the DLN. Studies in Wdfy4−/−, CD11c-Cre B2mfl/fl, or Xcr1-Cre Ifnar1fl/fl mice that respectively lack cross-presenting capacity, MHC-I antigen presentation by dendritic cells (DCs), or type I IFN signaling in the DC1 subset show that RRV-specific CD8+ T-cell responses can be improved by enhanced direct antigen presentation by DCs. Overall, our experiments suggest that antiviral type I IFN signaling in DCs limits direct alphavirus infection and antigen presentation, which likely delays CD8+ T-cell responses.

Original languageEnglish
JournalmBio
Volume15
Issue number12
DOIs
StatePublished - Dec 2024

Keywords

  • alphavirus
  • interferons
  • T cells
  • T-cell immunity
  • viral pathogenesis

Fingerprint

Dive into the research topics of 'Type I interferon signaling in dendritic cells limits direct antigen presentation and CD8+ T cell responses against an arthritogenic alphavirus'. Together they form a unique fingerprint.

Cite this