TY - JOUR
T1 - Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4
AU - Hu, Hongzhen
AU - Grandl, Jörg
AU - Bandell, Michael
AU - Petrus, Matt
AU - Patapoutian, Ardem
PY - 2009/2/3
Y1 - 2009/2/3
N2 - Temperature-activated transient receptor potential ion channels (thermotrps) are polymodal detectors of various stimuli including temperature, voltage, and chemicals. To date, it is not known how trp channels integrate the action of such disparate stimuli. Identifying specific residues required for channel-activation by distinct stimuli is necessary for understanding overall trp channel function. Trpv3 is activated by warm temperatures and various chemicals, and is modulated by voltage. One potent activator of trpv3 is 2-aminoethyl diphenylborinate (2-apb), a synthetic chemical that modulates many trp channels. In a high-throughput mutagenesis screen of ≈14,000 mutated mouse trpv3 clones, we found 2 residues (h426 and r696) specifically required for sensitivity of trpv3 to 2-apb, but not to camphor or voltage. The cytoplasmic n-terminal mutation h426n in human, dog, and frog trpv3 also effectively abolished 2-apb activation without affecting camphor responses. Interestingly, chicken trpv3 is weakly sensitive to 2-apb, and the equivalent residue at 426 is an asparagine (n). Mutating this residue to histidine induced 2-apb sensitivity of chicken trpv3 to levels comparable for other trpv3 orthologs. The cytoplasmic c-terminal mutation r696k in the trp box displayed 2-apb specific deficits only in the presence of extracellular calcium, suggesting involvement in gating. Trpv4, a related thermo trp, is 2-apb insensitive and has variant sequences at both residues identified here. Remarkably, mutating these 2 residues in trpv4 to trpv3 sequences (n426h and w737r) was sufficient to induce trpv3-like 2-apb sensitivity. Therefore, 2-apb activation of trpv3 is separable from other activation mechanisms, and depends on 2 cytoplasmic residues.
AB - Temperature-activated transient receptor potential ion channels (thermotrps) are polymodal detectors of various stimuli including temperature, voltage, and chemicals. To date, it is not known how trp channels integrate the action of such disparate stimuli. Identifying specific residues required for channel-activation by distinct stimuli is necessary for understanding overall trp channel function. Trpv3 is activated by warm temperatures and various chemicals, and is modulated by voltage. One potent activator of trpv3 is 2-aminoethyl diphenylborinate (2-apb), a synthetic chemical that modulates many trp channels. In a high-throughput mutagenesis screen of ≈14,000 mutated mouse trpv3 clones, we found 2 residues (h426 and r696) specifically required for sensitivity of trpv3 to 2-apb, but not to camphor or voltage. The cytoplasmic n-terminal mutation h426n in human, dog, and frog trpv3 also effectively abolished 2-apb activation without affecting camphor responses. Interestingly, chicken trpv3 is weakly sensitive to 2-apb, and the equivalent residue at 426 is an asparagine (n). Mutating this residue to histidine induced 2-apb sensitivity of chicken trpv3 to levels comparable for other trpv3 orthologs. The cytoplasmic c-terminal mutation r696k in the trp box displayed 2-apb specific deficits only in the presence of extracellular calcium, suggesting involvement in gating. Trpv4, a related thermo trp, is 2-apb insensitive and has variant sequences at both residues identified here. Remarkably, mutating these 2 residues in trpv4 to trpv3 sequences (n426h and w737r) was sufficient to induce trpv3-like 2-apb sensitivity. Therefore, 2-apb activation of trpv3 is separable from other activation mechanisms, and depends on 2 cytoplasmic residues.
UR - http://www.scopus.com/inward/record.url?scp=60849098730&partnerID=8YFLogxK
U2 - 10.1073/pnas.0812209106
DO - 10.1073/pnas.0812209106
M3 - Article
C2 - 19164517
AN - SCOPUS:60849098730
SN - 0027-8424
VL - 106
SP - 1626
EP - 1631
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 5
ER -