Abstract
West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans, especially in immunocompromised individuals. Previous studies have shown essential protective roles for antiviral cytokines (e.g., alpha interferon [IFN-α] and IFN-γ) against WNV in mice. However, studies using cell culture offer conflicting answers regarding whether tumor necrosis factor alpha (TNF-α) has an anti-WNV function. To test the biological significance of TNF-α against WNV in vivo, experiments were performed with TNF receptor-1 (TNF-R1)-deficient and TNF-α-depleted C57BL/6 mice. TNF-R1-/- mice had enhanced mortality and decreased survival time after WNV infection compared to congenic wild-type mice. Consistent with this, administration of a neutralizing anti-TNF-α monoclonal antibody also decreased survival after WNV infection. Relatively small differences in viral burdens in peripheral tissues of TNF-R1-/- mice were observed, and this occurrence correlated with a modest antiviral effect of TNF-α on primary macrophages but not dendritic cells. In contrast, the viral titers detected in the central nervous systems of TNF-R1-/- mice were significantly increased compared to those of wild-type mice, although TNF-α did not have a direct antiviral effect in primary neuron cultures. Whereas no defect in priming of adaptive B- and T-cell responses in TNF-R1-/- mice was observed, there were significant reductions in accumulations of CD8+ T cells and macrophages in the brain. Our data are most consistent with a model in which interaction of TNF-α with TNF-R1 protects against WNV infection by regulating migration of protective inflammatory cells into the brain during acute infection.
Original language | English |
---|---|
Pages (from-to) | 8956-8964 |
Number of pages | 9 |
Journal | Journal of virology |
Volume | 82 |
Issue number | 18 |
DOIs | |
State | Published - Sep 2008 |