TY - JOUR
T1 - Tumor necrosis factor-α confers cardioprotection through ectopic expression of keratins K8 and K18
AU - Papathanasiou, Stamatis
AU - Rickelt, Steffen
AU - Soriano, Maria Eugenia
AU - Schips, Tobias G.
AU - Maier, Harald J.
AU - Davos, Constantinos H.
AU - Varela, Aimilia
AU - Kaklamanis, Loukas
AU - Mann, Douglas L.
AU - Capetanaki, Yassemi
N1 - Funding Information:
We thank W. Franke and Y. Dörflinger (Helmholtz Group for Cell Biology, German Cancer Research Center, Heidelberg) for extensive technical support with EM and immunogold labeling, for providing EM-related materials, antibodies and human tissue samples, and for very valuable comments. We especially thank L. Scorrano (University of Padova) for his help and support on the study of mitochondrial function and for providing the consumables for mitochondrial function experiments for these experiments. We thank L. Staloch, C. Weinheimer and A. Kovachs for the TAC surgeries and echocarardiographic measurements of the TACed mice. We also thank W.K. Jones (Department of Pharmacology and Cell Biophysics, University of Cincinnati) for kindly providing the IκBα-3M mice, M. Gerstenlauer for technical assistance with IKKMyHC mice experiments and J. D. Molkentin (Howard Hughes Medical Institute and Cincinnati Children’s Hospital Medical Center) for providing samples of MHC-Cn and Csrp3−/− mice and mice subjected to TAC or MI. We also thank P. Politis and N. Athanassiadis (Biomedical Research Foundation, Academy of Athens) for providing materials related to the luciferase reporter assays and human samples, respectively. Our sincere thanks to I. Kostavasili for her long-term technical assistance throughout this project. This work was supported by the Greek Secretariat of Research and Development grants (PENED 01ED371, PEP-ATT-39, ESPA SYNERGASIA 09SYN-21-965) and grant of “Excellence II” 5342 to Y.C., a US National Institutes of Health R01 HL 111094 grant to D.L.M. and a fellowship (Heracleitus II) by the European Union and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework to S.P.
Publisher Copyright:
© 2015 Nature America, Inc. All rights reserved.
PY - 2015/9/8
Y1 - 2015/9/8
N2 - Tumor necrosis factor-α (TNF-α), one of the major stress-induced proinflammatory cytokines, is upregulated in the heart after tissue injury, and its sustained expression can contribute to the development of heart failure. Whether TNF-α also exerts cytoprotective effects in heart failure is not known. Here we provide evidence for a cardioprotective function of TNF-α in a genetic heart failure model, desmin-deficient mice. The cardioprotective effects of TNF-α are a consequence of nuclear factor-κB (NF-κB)-mediated ectopic expression in cardiomyocytes of keratin 8 (K8) and keratin 18 (K18), two epithelial-specific intermediate filament proteins. In cardiomyocytes, K8 and K18 (K8/K18) formed an alternative cytoskeletal network that localized mainly at intercalated discs (IDs) and conferred cardioprotection by maintaining normal ID structure and mitochondrial integrity and function. Ectopic induction of K8/K18 expression in cardiomyocytes also occurred in other genetic and experimental models of heart failure. Loss of the K8/K18 network resulted in a maladaptive cardiac phenotype following transverse aortic constriction. In human failing myocardium, where TNF-α expression is upregulated, K8/K18 were also ectopically expressed and localized primarily at IDs, which did not contain detectable amounts of desmin. Thus, TNF-α- and NF-κB-mediated formation of an alternative, stress-induced intermediate filament cytoskeleton has cardioprotective function in mice and potentially in humans.
AB - Tumor necrosis factor-α (TNF-α), one of the major stress-induced proinflammatory cytokines, is upregulated in the heart after tissue injury, and its sustained expression can contribute to the development of heart failure. Whether TNF-α also exerts cytoprotective effects in heart failure is not known. Here we provide evidence for a cardioprotective function of TNF-α in a genetic heart failure model, desmin-deficient mice. The cardioprotective effects of TNF-α are a consequence of nuclear factor-κB (NF-κB)-mediated ectopic expression in cardiomyocytes of keratin 8 (K8) and keratin 18 (K18), two epithelial-specific intermediate filament proteins. In cardiomyocytes, K8 and K18 (K8/K18) formed an alternative cytoskeletal network that localized mainly at intercalated discs (IDs) and conferred cardioprotection by maintaining normal ID structure and mitochondrial integrity and function. Ectopic induction of K8/K18 expression in cardiomyocytes also occurred in other genetic and experimental models of heart failure. Loss of the K8/K18 network resulted in a maladaptive cardiac phenotype following transverse aortic constriction. In human failing myocardium, where TNF-α expression is upregulated, K8/K18 were also ectopically expressed and localized primarily at IDs, which did not contain detectable amounts of desmin. Thus, TNF-α- and NF-κB-mediated formation of an alternative, stress-induced intermediate filament cytoskeleton has cardioprotective function in mice and potentially in humans.
UR - http://www.scopus.com/inward/record.url?scp=84941022388&partnerID=8YFLogxK
U2 - 10.1038/nm.3925
DO - 10.1038/nm.3925
M3 - Article
C2 - 26280121
AN - SCOPUS:84941022388
VL - 21
SP - 1076
EP - 1084
JO - Nature Medicine
JF - Nature Medicine
SN - 1078-8956
IS - 9
ER -