Abstract

The limited success of cancer immunotherapy has posed challenges in treating patients with cancer. However, promising strides could be made with a deeper understanding of the factors that cause T cell dysfunction within the tumor microenvironment and by developing effective strategies to counteract tumor-induced immune suppression. Here, we report that tumor-derived extracellular vesicles (tEVs) can induce senescence and suppression in T cells. Programmed death ligand 1 (PD-L1), a key component within tEVs, induced DNA damage and hyperactive lipid metabolism in both human and mouse T cells. This caused an elevated expression of lipid metabolic enzymes and an increase in cholesterol and lipid droplet formation, leading to cellular senescence. At a molecular level, PD-L1 derived from tEVs activated the cAMP-response element binding protein (CREB) and signal transducer and activator of transcription (STAT) signaling, which promoted lipid metabolism and facilitated senescence in human and mouse T cells. Inhibiting EV synthesis in tumors or blocking CREB signaling, cholesterol synthesis, and lipid droplet formation in effector T cells averted the tEV-mediated T cell senescence in vitro and in vivo in cell adoptive transfer and melanoma mouse models. The same treatments also bolstered the antitumor efficacy of adoptive transfer T cell therapy and anti–PD-L1 checkpoint immunotherapy in both human and mouse melanoma models. These studies identified mechanistic links between tumor-mediated immune suppression and potential immunotherapy resistance, and they provide new strategies for cancer immunotherapy.

Original languageEnglish
Article numbereadm7269
JournalScience translational medicine
Volume17
Issue number785
DOIs
StatePublished - Feb 12 2025

Fingerprint

Dive into the research topics of 'Tumor extracellular vesicle–derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming'. Together they form a unique fingerprint.

Cite this