TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension

Christopher L. Gilchrist, Holly A. Leddy, Laurel Kaye, Natasha D. Case, Katheryn E. Rothenberg, Dianne Little, Wolfgang Liedtke, Brenton D. Hoffman, Farshid Guilak

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Microarchitectural cues drive aligned fibrillar collagen deposition in vivo and in biomaterial scaffolds, but the cell-signaling events that underlie this process are not well understood. Utilizing a multicellular patterning model system that allows for observation of intracellular signaling events during collagen matrix assembly, we investigated the role of calcium (Ca 2+ ) signaling in human mesenchymal stem cells (MSCs) during this process. We observed spontaneous Ca 2+ oscillations in MSCs during fibrillar collagen assembly, and hypothesized that the transient receptor potential vanilloid 4 (TRPV4) ion channel, a mechanosensitive Ca 2+ -permeable channel, may regulate this signaling. Inhibition of TRPV4 nearly abolished Ca 2+ signaling at initial stages of collagen matrix assembly, while at later times had reduced but significant effects. Importantly, blocking TRPV4 activity dramatically reduced aligned collagen fibril assembly; conversely, activating TRPV4 accelerated aligned collagen formation. TRPV4-dependent Ca 2+ oscillations were found to be independent of pattern shape or subpattern cell location, suggesting this signaling mechanism is necessary for aligned collagen formation but not sufficient in the absence of physical (microarchitectural) cues that force multicellular alignment. As cell-generated mechanical forces are known to be critical to the matrix assembly process, we examined the role of TRPV4-mediated Ca 2+ signaling in force generated across the load-bearing focal adhesion protein vinculin within MSCs using an FRET-based tension sensor. Inhibiting TRPV4 decreased tensile force across vinculin, whereas TRPV4 activation caused a dynamic unloading and reloading of vinculin. Together, these findings suggest TRPV4 activity regulates forces at cell-matrix adhesions and is critical to aligned collagen matrix assembly by MSCs.

Original languageEnglish
Pages (from-to)1992-1997
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume116
Issue number6
DOIs
StatePublished - Feb 5 2019

Keywords

  • Calcium
  • Fibrocartilage
  • Mechanobiology
  • Mechanotransduction
  • Tendon

Fingerprint Dive into the research topics of 'TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension'. Together they form a unique fingerprint.

Cite this