TY - JOUR
T1 - TRPC1 as a negative regulator for TRPC4 and TRPC5 channels
AU - Kim, Jinsung
AU - Ko, Juyeon
AU - Myeong, Jongyun
AU - Kwak, Misun
AU - Hong, Chansik
AU - So, Insuk
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington’s disease, Parkinson’s disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.
AB - Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington’s disease, Parkinson’s disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.
KW - Heteromerization
KW - Transient receptor potential canonical (TRPC) channel
KW - TRPC1 channel
KW - TRPC4 channel
KW - TRPC5 channel
UR - http://www.scopus.com/inward/record.url?scp=85068125763&partnerID=8YFLogxK
U2 - 10.1007/s00424-019-02289-w
DO - 10.1007/s00424-019-02289-w
M3 - Review article
C2 - 31222490
AN - SCOPUS:85068125763
SN - 0031-6768
VL - 471
SP - 1045
EP - 1053
JO - Pflugers Archiv European Journal of Physiology
JF - Pflugers Archiv European Journal of Physiology
IS - 8
ER -