Tristetraprolin expression by keratinocytes controls local and systemic inflammation

Mathieu Andrianne, Assiya Assabban, Caroline La, Denis Mogilenko, Delphine Staumont Salle, Sébastien Fleury, Gilles Doumont, Gaëtan Van Simaeys, Sergei A. Nedospasov, Perry J. Blackshear, David Dombrowicz, Stanislas Goriely, Laurye Van Maele

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Tristetraprolin (TTP, encoded by the Zfp36 gene) regulates the mRNA stability of several important cytokines. Due to the critical role of this RNA-binding protein in the control of inflammation, TTP deficiency leads to the spontaneous development of a complex inflammatory syndrome. So far, this phenotype has been largely attributed to dysregulated production of TNF and IL-23 by myeloid cells, such as macrophages or DCs. Here, we generated mice with conditional deletion of TTP in keratinocytes (Zfp36fl/flK14-Cre mice, referred to herein as Zfp36ΔEP mice). Unlike DC-restricted (CD11c-Cre) or myeloid cell–restricted (LysM-Cre) TTP ablation, these mice developed exacerbated inflammation in the imiquimod-induced psoriasis model. Furthermore, Zfp36ΔEP mice progressively developed a spontaneous pathology with systemic inflammation, psoriatic-like skin lesions, and dactylitis. Finally, we provide evidence that keratinocyte-derived TNF production drives these different pathological features. In summary, these findings expand current views on the initiation of psoriasis and related arthritis by revealing the keratinocyte-intrinsic role of TTP.

Original languageEnglish
Article numbere92979
JournalJournal of Clinical Investigation
Volume2
Issue number11
DOIs
StatePublished - 2017

Fingerprint

Dive into the research topics of 'Tristetraprolin expression by keratinocytes controls local and systemic inflammation'. Together they form a unique fingerprint.

Cite this