TY - JOUR
T1 - Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system
AU - Bell, Robert D.
AU - Sagare, Abhay P.
AU - Friedman, Alan E.
AU - Bedi, Gurrinder S.
AU - Holtzman, David M.
AU - Deane, Rashid
AU - Zlokovic, Berislav V.
PY - 2007/5/16
Y1 - 2007/5/16
N2 - Amyloid β-peptide (Aβ) clearance from the central nervous system (CNS) maintains its low levels in brain. In Alzheimer's disease, Aβ accumulates in brain possibly because of its faulty CNS clearance and a deficient efflux across the blood-brain barrier (BBB). By using human-specific enzyme-linked immunosorbent assays, we measured a rapid 30 mins efflux at the BBB and transport via the interstitial fluid (ISF) bulk flow of human-unlabeled Aβ and of Aβ transport proteins, apolipoprotein E (apoE) and apoJ in mice. We show (i) Aβ40 is cleared rapidly across the BBB via low-density lipoprotein receptor-related protein (LRP)1 at a rate of 0.21 pmol/min g ISF or 6-fold faster than via the ISF flow; (ii) Aβ42 is removed across the BBB at a rate 1.9-fold slower compared with Aβ40; (iii) apoE, lipid-poor isoform 3, is cleared slowly via the ISF flow and across the BBB (0.03-0.04 pmol/min g ISF), and after lipidation its transport at the BBB becomes barely detectable within 30 mins; (iv) apoJ is eliminated rapidly across the BBB (0.16 pmol/min g ISF) via LRP2. Clearance rates of unlabeled and corresponding 125I-labeled Aβ and apolipoproteins were almost identical, but could not be measured at low physiologic levels by mass spectrometry. Amyloid β-peptide 40 binding to apoE3 reduced its efflux rate at the BBB by 5.7-fold, whereas Aβ42 binding to apoJ enhanced Aβ42 BBB clearance rate by 83%. Thus, Aβ, apoE, and apoJ are cleared from brain by different transport pathways, and apoE and apoJ may critically modify Aβ clearance at the BBB.
AB - Amyloid β-peptide (Aβ) clearance from the central nervous system (CNS) maintains its low levels in brain. In Alzheimer's disease, Aβ accumulates in brain possibly because of its faulty CNS clearance and a deficient efflux across the blood-brain barrier (BBB). By using human-specific enzyme-linked immunosorbent assays, we measured a rapid 30 mins efflux at the BBB and transport via the interstitial fluid (ISF) bulk flow of human-unlabeled Aβ and of Aβ transport proteins, apolipoprotein E (apoE) and apoJ in mice. We show (i) Aβ40 is cleared rapidly across the BBB via low-density lipoprotein receptor-related protein (LRP)1 at a rate of 0.21 pmol/min g ISF or 6-fold faster than via the ISF flow; (ii) Aβ42 is removed across the BBB at a rate 1.9-fold slower compared with Aβ40; (iii) apoE, lipid-poor isoform 3, is cleared slowly via the ISF flow and across the BBB (0.03-0.04 pmol/min g ISF), and after lipidation its transport at the BBB becomes barely detectable within 30 mins; (iv) apoJ is eliminated rapidly across the BBB (0.16 pmol/min g ISF) via LRP2. Clearance rates of unlabeled and corresponding 125I-labeled Aβ and apolipoproteins were almost identical, but could not be measured at low physiologic levels by mass spectrometry. Amyloid β-peptide 40 binding to apoE3 reduced its efflux rate at the BBB by 5.7-fold, whereas Aβ42 binding to apoJ enhanced Aβ42 BBB clearance rate by 83%. Thus, Aβ, apoE, and apoJ are cleared from brain by different transport pathways, and apoE and apoJ may critically modify Aβ clearance at the BBB.
KW - Amyloid β-peptide
KW - Apolipoprotein E
KW - Apolipoprotein J
KW - Blood-brain barrier
KW - Clearance
KW - Mice
UR - http://www.scopus.com/inward/record.url?scp=34247506244&partnerID=8YFLogxK
U2 - 10.1038/sj.jcbfm.9600419
DO - 10.1038/sj.jcbfm.9600419
M3 - Article
C2 - 17077814
AN - SCOPUS:34247506244
SN - 0271-678X
VL - 27
SP - 909
EP - 918
JO - Journal of Cerebral Blood Flow and Metabolism
JF - Journal of Cerebral Blood Flow and Metabolism
IS - 5
ER -