TY - JOUR
T1 - Translational design for limited resource settings as demonstrated by Vent-Lock, a 3D-printed ventilator multiplexer
AU - Xun, Helen
AU - Shallal, Christopher
AU - Unger, Justin
AU - Tao, Runhan
AU - Torres, Alberto
AU - Vladimirov, Michael
AU - Frye, Jenna
AU - Singhala, Mohit
AU - Horne, Brockett
AU - Kim, Bo Soo
AU - Burke, Broc
AU - Montana, Michael
AU - Talcott, Michael
AU - Winters, Bradford
AU - Frisella, Margaret
AU - Kushner, Bradley S.
AU - Sacks, Justin M.
AU - Guest, James K.
AU - Kang, Sung Hoon
AU - Caffrey, Julie
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Mechanical ventilators are essential to patients who become critically ill with acute respiratory distress syndrome (ARDS), and shortages have been reported due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We utilized 3D printing (3DP) technology to rapidly prototype and test critical components for a novel ventilator multiplexer system, Vent-Lock, to split one ventilator or anesthesia gas machine between two patients. FloRest, a novel 3DP flow restrictor, provides clinicians control of tidal volumes and positive end expiratory pressure (PEEP), using the 3DP manometer adaptor to monitor pressures. We tested the ventilator splitter circuit in simulation centers between artificial lungs and used an anesthesia gas machine to successfully ventilate two swine. Results: As one of the first studies to demonstrate splitting one anesthesia gas machine between two swine, we present proof-of-concept of a de novo, closed, multiplexing system, with flow restriction for potential individualized patient therapy. Conclusions: While possible, due to the complexity, need for experienced operators, and associated risks, ventilator multiplexing should only be reserved for urgent situations with no other alternatives. Our report underscores the initial design and engineering considerations required for rapid medical device prototyping via 3D printing in limited resource environments, including considerations for design, material selection, production, and distribution. We note that optimization of engineering may minimize 3D printing production risks but may not address the inherent risks of the device or change its indications. Thus, our case report provides insights to inform future rapid prototyping of medical devices.
AB - Background: Mechanical ventilators are essential to patients who become critically ill with acute respiratory distress syndrome (ARDS), and shortages have been reported due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We utilized 3D printing (3DP) technology to rapidly prototype and test critical components for a novel ventilator multiplexer system, Vent-Lock, to split one ventilator or anesthesia gas machine between two patients. FloRest, a novel 3DP flow restrictor, provides clinicians control of tidal volumes and positive end expiratory pressure (PEEP), using the 3DP manometer adaptor to monitor pressures. We tested the ventilator splitter circuit in simulation centers between artificial lungs and used an anesthesia gas machine to successfully ventilate two swine. Results: As one of the first studies to demonstrate splitting one anesthesia gas machine between two swine, we present proof-of-concept of a de novo, closed, multiplexing system, with flow restriction for potential individualized patient therapy. Conclusions: While possible, due to the complexity, need for experienced operators, and associated risks, ventilator multiplexing should only be reserved for urgent situations with no other alternatives. Our report underscores the initial design and engineering considerations required for rapid medical device prototyping via 3D printing in limited resource environments, including considerations for design, material selection, production, and distribution. We note that optimization of engineering may minimize 3D printing production risks but may not address the inherent risks of the device or change its indications. Thus, our case report provides insights to inform future rapid prototyping of medical devices.
KW - 3D printing
KW - Austere medicine
KW - Covid-19
KW - De novo system
KW - In vivo study
KW - Limited resources
KW - Material extrusion
KW - Vat photopolymerization
KW - Ventilator multiplexer
UR - http://www.scopus.com/inward/record.url?scp=85166351641&partnerID=8YFLogxK
U2 - 10.1186/s41205-022-00148-6
DO - 10.1186/s41205-022-00148-6
M3 - Article
AN - SCOPUS:85166351641
SN - 2365-6271
VL - 8
JO - 3D Printing in Medicine
JF - 3D Printing in Medicine
IS - 1
M1 - 29
ER -