Abstract

Shear strain patterns in a cylindrical gelatin sample under transient angular acceleration were measured by tagged magnetic resonance imaging (MRI). Measured strain fields were compared to theoretical strain fields obtained by finite element (FE) simulation. Agreement between theory and experiment is very good. The current results support the utility of the experimental approach for tasks such as measurement of shear waves in brain tissue during angular acceleration of the skull. The results also show that a simple viscoelastic model is suitable to describe rapid shear deformation of a gel biomaterial.

Original languageEnglish
Title of host publication2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
Pages649-652
Number of pages4
DOIs
StatePublished - 2008
Event21st Biennial Conference on Mechanical Vibration and Noise, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007 - Las Vegas, NV, United States
Duration: Sep 4 2007Sep 7 2007

Publication series

Name2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
Volume1 PART A

Conference

Conference21st Biennial Conference on Mechanical Vibration and Noise, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
Country/TerritoryUnited States
CityLas Vegas, NV
Period09/4/0709/7/07

Fingerprint

Dive into the research topics of 'Transient shear wave propagation in a viscoelastic gel cylinder: Comparison of theoryto MRI-based measurements'. Together they form a unique fingerprint.

Cite this