TY - JOUR
T1 - Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora
AU - Heizer, Esley
AU - Zarlenga, Dante S.
AU - Rosa, Bruce
AU - Gao, Xin
AU - Gasser, Robin B.
AU - De Graef, Jessie
AU - Geldhof, Peter
AU - Mitreva, Makedonka
N1 - Funding Information:
We would like to thank the dedicated members of the cDNA production group at the Washington University’s Genome Institute, John Martin, Zhengyuan Wang and Qi Wang for technical assistance and to all authors of the numerous algorithms used to perform the analysis. Research reported in this publication and the Nematode.net data dissemination was supported by the National Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award Number R01AI081803 to M.M. The cDNA pyrosequencing is part of the Strongylida genome sequencing initiative at the WUGC supported by NHGRI (U54HG003079)(http://www.genome.gov/ 10002154). JDG was funded by a Ph.D. grant of the ‘Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT - Vlaanderen).
PY - 2013/2/22
Y1 - 2013/2/22
N2 - Background: Cooperia oncophora and Ostertagia ostertagi are among the most important gastrointestinal nematodes of cattle worldwide. The economic losses caused by these parasites are on the order of hundreds of millions of dollars per year. Conventional treatment of these parasites is through anthelmintic drugs; however, as resistance to anthelmintics increases, overall effectiveness has begun decreasing. New methods of control and alternative drug targets are necessary. In-depth analysis of transcriptomic data can help provide these targets. Results: The assembly of 8.7 million and 11 million sequences from C. oncophora and O. ostertagi, respectively, resulted in 29,900 and 34,792 transcripts. Among these, 69% and 73% of the predicted peptides encoded by C. oncophora and O. ostertagi had homologues in other nematodes. Approximately 21% and 24% were constitutively expressed in both species, respectively; however, the numbers of transcripts that were stage specific were much smaller (~1% of the transcripts expressed in a stage). Approximately 21% of the transcripts in C. oncophora and 22% in O. ostertagi were up-regulated in a particular stage. Functional molecular signatures were detected for 46% and 35% of the transcripts in C. oncophora and O. ostertagi, respectively. More in-depth examinations of the most prevalent domains led to knowledge of gene expression changes between the free-living (egg, L1, L2 and L3 sheathed) and parasitic (L3 exsheathed, L4, and adult) stages. Domains previously implicated in growth and development such as chromo domains and the MADF domain tended to dominate in the free-living stages. In contrast, domains potentially involved in feeding such as the zinc finger and CAP domains dominated in the parasitic stages. Pathway analyses showed significant associations between life-cycle stages and peptides involved in energy metabolism in O. ostertagi whereas metabolism of cofactors and vitamins were specifically up-regulated in the parasitic stages of C. oncophora. Substantial differences were observed also between Gene Ontology terms associated with free-living and parasitic stages. Conclusions: This study characterized transcriptomes from multiple life stages from both C. oncophora and O. ostertagi. These data represent an important resource for studying these parasites. The results of this study show distinct differences in the genes involved in the free-living and parasitic life cycle stages. The data produced will enable better annotation of the upcoming genome sequences and will allow future comparative analyses of the biology, evolution and adaptation to parasitism in nematodes.
AB - Background: Cooperia oncophora and Ostertagia ostertagi are among the most important gastrointestinal nematodes of cattle worldwide. The economic losses caused by these parasites are on the order of hundreds of millions of dollars per year. Conventional treatment of these parasites is through anthelmintic drugs; however, as resistance to anthelmintics increases, overall effectiveness has begun decreasing. New methods of control and alternative drug targets are necessary. In-depth analysis of transcriptomic data can help provide these targets. Results: The assembly of 8.7 million and 11 million sequences from C. oncophora and O. ostertagi, respectively, resulted in 29,900 and 34,792 transcripts. Among these, 69% and 73% of the predicted peptides encoded by C. oncophora and O. ostertagi had homologues in other nematodes. Approximately 21% and 24% were constitutively expressed in both species, respectively; however, the numbers of transcripts that were stage specific were much smaller (~1% of the transcripts expressed in a stage). Approximately 21% of the transcripts in C. oncophora and 22% in O. ostertagi were up-regulated in a particular stage. Functional molecular signatures were detected for 46% and 35% of the transcripts in C. oncophora and O. ostertagi, respectively. More in-depth examinations of the most prevalent domains led to knowledge of gene expression changes between the free-living (egg, L1, L2 and L3 sheathed) and parasitic (L3 exsheathed, L4, and adult) stages. Domains previously implicated in growth and development such as chromo domains and the MADF domain tended to dominate in the free-living stages. In contrast, domains potentially involved in feeding such as the zinc finger and CAP domains dominated in the parasitic stages. Pathway analyses showed significant associations between life-cycle stages and peptides involved in energy metabolism in O. ostertagi whereas metabolism of cofactors and vitamins were specifically up-regulated in the parasitic stages of C. oncophora. Substantial differences were observed also between Gene Ontology terms associated with free-living and parasitic stages. Conclusions: This study characterized transcriptomes from multiple life stages from both C. oncophora and O. ostertagi. These data represent an important resource for studying these parasites. The results of this study show distinct differences in the genes involved in the free-living and parasitic life cycle stages. The data produced will enable better annotation of the upcoming genome sequences and will allow future comparative analyses of the biology, evolution and adaptation to parasitism in nematodes.
KW - Cattle
KW - Comparative genomics
KW - Cooperia oncophora
KW - Nematode
KW - Ostertagia ostertagi
KW - Parasite
KW - Transcripts
UR - http://www.scopus.com/inward/record.url?scp=84874048462&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-14-118
DO - 10.1186/1471-2164-14-118
M3 - Article
C2 - 23432754
AN - SCOPUS:84874048462
SN - 1471-2164
VL - 14
JO - BMC genomics
JF - BMC genomics
IS - 1
M1 - 118
ER -