TY - JOUR
T1 - Transcriptional remodeling of ion channel subunits by flow adaptation in human coronary artery endothelial cells
AU - Kefaloyianni, Eirini
AU - Coetzee, William A.
PY - 2011/6
Y1 - 2011/6
N2 - Endothelial cells (ECs) are constantly exposed to blood flow-induced shear forces in the vessels and this is a major determinant of endothelial function. Ion channels have a major role in endothelial function and in the control of vascular tone. We hypothesized that shear force is a general regulator of ion channel expression, which will have profound effects on endothelial function. We examined this hypothesis using large-scale quantitative real-time RT-PCR. Human coronary artery ECs were exposed to two levels of flow-induced shear stress for 24 h, while control cells were grown under static conditions. The expression of ion channel subunits was compared between control and flow-adapted cells. We used primers against 55 ion channel and exchanger subunits and were able to detect 54 subunits. Five dyn/cm2 of shear induced downregulation of 1 (NCX1) and upregulation of 18 subunits, including KCa2.2, K Ca2.3, CX37, Kv1.5 and HCN2. Fifteen dyn/cm2 of shear stress induced the expression of 30 ion channel subunits, including KCa2.3, KCa2.2, CX37, Kir2.3 and K Ca3.1. Our data demonstrate that substantial remodeling of endothelial ion channel subunit expression occurs with flow adaptation and suggest that altered ion channel expression may significantly contribute to vascular pathology associated with flow-induced alterations.
AB - Endothelial cells (ECs) are constantly exposed to blood flow-induced shear forces in the vessels and this is a major determinant of endothelial function. Ion channels have a major role in endothelial function and in the control of vascular tone. We hypothesized that shear force is a general regulator of ion channel expression, which will have profound effects on endothelial function. We examined this hypothesis using large-scale quantitative real-time RT-PCR. Human coronary artery ECs were exposed to two levels of flow-induced shear stress for 24 h, while control cells were grown under static conditions. The expression of ion channel subunits was compared between control and flow-adapted cells. We used primers against 55 ion channel and exchanger subunits and were able to detect 54 subunits. Five dyn/cm2 of shear induced downregulation of 1 (NCX1) and upregulation of 18 subunits, including KCa2.2, K Ca2.3, CX37, Kv1.5 and HCN2. Fifteen dyn/cm2 of shear stress induced the expression of 30 ion channel subunits, including KCa2.3, KCa2.2, CX37, Kir2.3 and K Ca3.1. Our data demonstrate that substantial remodeling of endothelial ion channel subunit expression occurs with flow adaptation and suggest that altered ion channel expression may significantly contribute to vascular pathology associated with flow-induced alterations.
KW - Coronary artery
KW - Endothelium
KW - Ion channel
KW - Shear
UR - http://www.scopus.com/inward/record.url?scp=79952339784&partnerID=8YFLogxK
U2 - 10.1159/000323475
DO - 10.1159/000323475
M3 - Article
C2 - 21389733
AN - SCOPUS:79952339784
SN - 1018-1172
VL - 48
SP - 357
EP - 367
JO - Journal of Vascular Research
JF - Journal of Vascular Research
IS - 4
ER -