TY - JOUR
T1 - Tonic inhibition of TRPV3 by Mg2+ in mouse epidermal keratinocytes
AU - Luo, Jialie
AU - Stewart, Randi
AU - Berdeaux, Rebecca
AU - Hu, Hongzhen
N1 - Funding Information:
We thank Hai-Tang Li for technical support and Feng Qin for help with single-channel analysis. We are grateful to our colleagues for comments and discussions. This project is partly supported by grants from the Texas Medical Center Digestive Diseases Center (to HH, 0008355) and Mission Connect/TIRR Foundation (to HH, 011-101), the University of Texas Health Science Center (to HH and RB), and the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK092590 to RB).
PY - 2012/9
Y1 - 2012/9
N2 - The transient receptor potential vanilloid 3 channel (TRPV3) is abundantly expressed in epidermal keratinocytes and has important roles in sensory biology and skin health. Mg2+ deficiency causes skin disorders under certain pathological conditions such as type 2 diabetes mellitus. In this study, we investigated the effect of Mg 2 on TRPV3 in primary epidermal keratinocytes. Extracellular Mg2+ (Mg2+]o) inhibited TRPV3-mediated membrane current and calcium influx. TRPV3 activation induced a calcium signaling pathway culminating in activation of the cAMP response element binding. TRPV3 inhibition by [Mg2+]o, the TRPV3 blocker ruthenium red, or TRPV3 siRNA suppressed this response. In TRPV3-expressing Chinese hamster ovary cells, both extracellular and intracellular Mg 2+ inhibited TRPV3 single-channel conductance, but not open probability. Neutralization of an aspartic acid residue (D641) in the extracellular pore loop or two acidic residues (E679, E682) in the inner pore region significantly attenuated the inhibitory effect of extracellular or intracellular Mg2+ on TRPV3-mediated signaling, respectively. Our findings suggest that epidermal TRPV3 is tonically inhibited by both extracellular and intracellular Mg2+, which act on both sides of the channel pore loop. Mg2+ deficiency may promote the function of TRPV3 and contribute to the pathogenesis of skin diseases.
AB - The transient receptor potential vanilloid 3 channel (TRPV3) is abundantly expressed in epidermal keratinocytes and has important roles in sensory biology and skin health. Mg2+ deficiency causes skin disorders under certain pathological conditions such as type 2 diabetes mellitus. In this study, we investigated the effect of Mg 2 on TRPV3 in primary epidermal keratinocytes. Extracellular Mg2+ (Mg2+]o) inhibited TRPV3-mediated membrane current and calcium influx. TRPV3 activation induced a calcium signaling pathway culminating in activation of the cAMP response element binding. TRPV3 inhibition by [Mg2+]o, the TRPV3 blocker ruthenium red, or TRPV3 siRNA suppressed this response. In TRPV3-expressing Chinese hamster ovary cells, both extracellular and intracellular Mg 2+ inhibited TRPV3 single-channel conductance, but not open probability. Neutralization of an aspartic acid residue (D641) in the extracellular pore loop or two acidic residues (E679, E682) in the inner pore region significantly attenuated the inhibitory effect of extracellular or intracellular Mg2+ on TRPV3-mediated signaling, respectively. Our findings suggest that epidermal TRPV3 is tonically inhibited by both extracellular and intracellular Mg2+, which act on both sides of the channel pore loop. Mg2+ deficiency may promote the function of TRPV3 and contribute to the pathogenesis of skin diseases.
UR - http://www.scopus.com/inward/record.url?scp=84865325631&partnerID=8YFLogxK
U2 - 10.1038/jid.2012.144
DO - 10.1038/jid.2012.144
M3 - Article
C2 - 22622423
AN - SCOPUS:84865325631
SN - 0022-202X
VL - 132
SP - 2158
EP - 2165
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
IS - 9
ER -