Timing of conversion to cervical malalignment and proximal junctional kyphosis following surgical correction of adult spinal deformity: A 3-year radiographic analysis

Peter G. Passias, Haddy Alas, Sara Naessig, Han Jo Kim, Renaud Lafage, Christopher Ames, Eric Klineberg, Katherine Pierce, Waleed Ahmad, Douglas Burton, Bassel Diebo, Shay Bess, D. Kojo Hamilton, Munish Gupta, Paul Park, Breton Line, Christopher I. Shaffrey, Justin S. Smith, Frank Schwab, Virginie Lafage

Research output: Contribution to journalArticlepeer-review


OBJECTIVE The goal of this study was to assess the conversion rate from baseline cervical alignment to postoperative cervical deformity (CD) and the corresponding proximal junctional kyphosis (PJK) rate in patients undergoing thoracolumbar adult spinal deformity (ASD) surgery. METHODS The operative records of patients with ASD with complete radiographic data beginning at baseline up to 3 years were included. Patients with no baseline CD were postoperatively stratified by Ames CD criteria (T1 slope-cervical lordosis mismatch [TS-CL] > 20°, cervical sagittal vertical axis [cSVA] > 40 mm), where CD was defined as fulfilling one or more of the Ames criteria. Severe CD was defined as TS-CL > 30° or cSVA > 60 mm. Follow-up intervals were established after ASD surgery, with 6 weeks postoperatively defined as early; 6 weeks-1 year as intermediate; 1-2 years as late; and 2-3 years as long-term. Descriptive analyses and McNemar tests identified the CD conversion rate, PJK rate (< -10° change in uppermost instrumented vertebra and the superior endplate of the vertebra 2 levels superior to the uppermost instrumented vertebra), and specific alignment parameters that converted. RESULTS Two hundred sixty-six patients who underwent ASD surgery (mean age 59.7 years, 77.4% female) met the inclusion criteria; 103 of these converted postoperatively, and the remaining 163 did not meet conversion criteria. Thirtyeight patients converted to CD early, 26 converted at the intermediate time point, 29 converted late, and 10 converted in the long-term. At conversion, the early group had the highest mean TS-CL at 25.4° ± 8.5° and the highest mean cSVA at 33.6 mm-both higher than any other conversion group. The long-term group had the highest mean C2-7 angle at 19.7° and the highest rate of PJK compared to other groups (p = 0.180). The early group had the highest rate of conversion to severe CD, with 9 of 38 patients having severe TS-CL and only 1 patient per group converting to severe cSVA. Seven patients progressed from having only malaligned TS-CL at baseline (with normal cSVA) to CD with both malaligned TS-CL and cSVA by 6 weeks. Conversely, only 2 patients progressed from malaligned cSVA to both malaligned cSVA and TS-CL. By 1 year, the former number increased from 7 to 26 patients, and the latter increased from 2 to 20 anpatients. The revision rate was highest in the intermediate group at 48.0%, versus the early group at 19.2%, late group at 27.3%, and long-term group at 20% (p = 0.128). A higher pelvic incidence-lumbar lordosis mismatch, lower thoracic kyphosis, and a higher thoracic kyphosis apex immediately postoperatively significantly predicted earlier rather than later conversion (all p < 0.05). Baseline lumbar lordosis, pelvic tilt, and sacral slope were not significant predictors. CONCLUSIONS Patients with ASD with normative cervical alignment who converted to CD after thoracolumbar surgery had varying radiographic findings based on timing of conversion. Although the highest number of patients converted within 6 weeks postoperatively, patients who converted in the late or long-term follow-up intervals had higher rates of concurrent PJK and greater radiographic progression.

Original languageEnglish
Pages (from-to)830-838
Number of pages9
JournalJournal of Neurosurgery: Spine
Issue number6
StatePublished - Jun 2021


  • Adult spinal deformity
  • Cervical alignment
  • Conversion
  • Proximal junctional kyphosis


Dive into the research topics of 'Timing of conversion to cervical malalignment and proximal junctional kyphosis following surgical correction of adult spinal deformity: A 3-year radiographic analysis'. Together they form a unique fingerprint.

Cite this