Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: Role of NMDA receptor activation and NMDA dependent calcium entry

Laxmikant S. Deshpande, Jeffrey K. Lou, Ali Mian, Robert E. Blair, Sompong Sombati, Elisa Attkisson, Robert J. DeLorenzo

Research output: Contribution to journalArticle

65 Scopus citations

Abstract

The hippocampus is especially vulnerable to seizure-induced damage and excitotoxic neuronal injury. This study examined the time course of neuronal death in relationship to seizure duration and the pharmacological mechanisms underlying seizure-induced cell death using low magnesium (Mg2+) induced continuous high frequency epileptiform discharges (in vitro status epilepticus) in hippocampal neuronal cultures. Neuronal death was assessed using cell morphology and fluorescein diacetate-propidium iodide staining. Effects of low Mg2+ and various receptor antagonists on spike frequency were assessed using patch clamp electrophysiology. We observed a linear and time-dependent increase in neuronal death with increasing durations of status epilepticus. This cell death was dependent upon extracellular calcium (Ca2+) that entered primarily through the N-methyl-d-aspartate (NMDA) glutamate receptor channel subtype. Neuronal death was significantly decreased by co-incubation with the NMDA receptor antagonists and was also inhibited by reduction of extracellular (Ca2+) during status epilepticus. In contrast, neuronal death from in vitro status epilepticus was not significantly prevented by inhibition of other glutamate receptor subtypes or voltage-gated Ca2+ channels. Interestingly this NMDA-Ca2+ dependent neuronal death was much more gradual in onset compared to cell death from excitotoxic glutamate exposure. The results provide evidence that in vitro status epilepticus results in increased activation of the NMDA-Ca2+ transduction pathway leading to neuronal death in a time-dependent fashion. The results also indicate that there is a significant window of opportunity during the initial time of continuous seizure activity to be able to intervene, protect neurons and decrease the high morbidity and mortality associated with status epilepticus.

Original languageEnglish
Pages (from-to)73-83
Number of pages11
JournalEuropean Journal of Pharmacology
Volume583
Issue number1
DOIs
StatePublished - Mar 31 2008
Externally publishedYes

Keywords

  • Low Mg model of status epilepticus
  • NMDA-Ca pathway
  • Neuronal death

Fingerprint Dive into the research topics of 'Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: Role of NMDA receptor activation and NMDA dependent calcium entry'. Together they form a unique fingerprint.

  • Cite this