TY - JOUR
T1 - Three genomes in the algal genus Volvox reveal the fate of a haploid sex-determining region after a transition to homothallism
AU - Yamamoto, Kayoko
AU - Hamaji, Takashi
AU - Kawai-Toyooka, Hiroko
AU - Matsuzaki, Ryo
AU - Takahashi, Fumio
AU - Nishimura, Yoshiki
AU - Kawachi, Masanobu
AU - Noguchi, Hideki
AU - Minakuchi, Yohei
AU - Umen, James G.
AU - Toyoda, Atsushi
AU - Nozaki, Hisayoshi
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/5/25
Y1 - 2021/5/25
N2 - Transitions between separate sexes (dioecy) and other mating systems are common across eukaryotes. Here, we study a change in a haploid dioecious green algal species with male- and female-determining chromosomes (U and V). The genus Volvox is an oogamous (with large, immotile female gametes and small, motile male gametes) and includes both heterothallic species (with distinct male and female genotypes, associated with a mating-type system that prevents fusion of gametes of the same sex) and homothallic species (bisexual, with the ability to self-fertilize). We date the origin of an expanded sex-determining region (SDR) in Volvox to at least 75 Mya, suggesting that homothallism represents a breakdown of dioecy (heterothallism). We investigated the involvement of the SDR of the U and V chromosomes in this transition. Using de novo whole-genome sequences, we identified a heteromorphic SDR of ca 1 Mbp in male and female genotypes of the heterothallic species Volvox reticuliferus and a homologous region (SDLR) in the closely related homothallic species Volvox africanus, which retained several different hallmark features of an SDR. The V. africanus SDLR includes a large region resembling the female SDR of the presumptive heterothallic ancestor, whereas most genes from the male SDR are absent. However, we found a multicopy array of the male-determining gene, MID, in a different genomic location from the SDLR. Thus, in V. africanus, an ancestrally female genotype may have acquired MID and thereby gained male traits.
AB - Transitions between separate sexes (dioecy) and other mating systems are common across eukaryotes. Here, we study a change in a haploid dioecious green algal species with male- and female-determining chromosomes (U and V). The genus Volvox is an oogamous (with large, immotile female gametes and small, motile male gametes) and includes both heterothallic species (with distinct male and female genotypes, associated with a mating-type system that prevents fusion of gametes of the same sex) and homothallic species (bisexual, with the ability to self-fertilize). We date the origin of an expanded sex-determining region (SDR) in Volvox to at least 75 Mya, suggesting that homothallism represents a breakdown of dioecy (heterothallism). We investigated the involvement of the SDR of the U and V chromosomes in this transition. Using de novo whole-genome sequences, we identified a heteromorphic SDR of ca 1 Mbp in male and female genotypes of the heterothallic species Volvox reticuliferus and a homologous region (SDLR) in the closely related homothallic species Volvox africanus, which retained several different hallmark features of an SDR. The V. africanus SDLR includes a large region resembling the female SDR of the presumptive heterothallic ancestor, whereas most genes from the male SDR are absent. However, we found a multicopy array of the male-determining gene, MID, in a different genomic location from the SDLR. Thus, in V. africanus, an ancestrally female genotype may have acquired MID and thereby gained male traits.
KW - Evolution
KW - Volvox
KW - heterothallism
KW - homothallism
KW - sex
UR - http://www.scopus.com/inward/record.url?scp=85106349705&partnerID=8YFLogxK
U2 - 10.1073/pnas.2100712118
DO - 10.1073/pnas.2100712118
M3 - Article
C2 - 34011609
AN - SCOPUS:85106349705
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 21
M1 - e2100712118
ER -