TY - JOUR
T1 - Thermodynamic and structural basis of phosphorylation-induced disorder-to-order transition in the regulatory light chain of smooth muscle myosin
AU - Espinoza-Fonseca, L. Michel
AU - Kast, David
AU - Thomas, David D.
PY - 2008/9/17
Y1 - 2008/9/17
N2 - We have performed molecular dynamics simulations of the phosphorylation domain (PD) of the regulatory light chain (RLC) of smooth muscle myosin, to gain insight into the thermodynamic principles governing the phosphorylation-induced disorder-to-order transition. Simulations were performed in explicit water under near-physiological conditions, starting with an ideal α-helix. In the absence of phosphorylation, the helical periodicity of the peptide was disrupted at residues T9-K11, while phosphorylation significantly favored the helical periodicity, in agreement with experimental data. Using the MM/PBSA approach, we calculated a relative free energy of -7.1 kcal/mol for the disorder-to-order transition. A large enthalpic decrease was compensated by a large loss of conformational entropy, despite the small helical increase (no more than three residues) upon phosphorylation. Phosphorylation decreased the conformational dynamics of K and R side chains, especially R16, which forms a salt bridge with pS19. Mutation of R16 to A or E prevented this phosphorylation-dependent ordering. We propose that phosphorylation balances the enthalpy-entropy compensation of the disorder-to-order transition of RLC via short and long-range electrostatic interactions with positively charged residues of the phosphorylation domain. We suggest that this balance is necessary to induce a disorder-to-order conformational change through a subtle energy switching.
AB - We have performed molecular dynamics simulations of the phosphorylation domain (PD) of the regulatory light chain (RLC) of smooth muscle myosin, to gain insight into the thermodynamic principles governing the phosphorylation-induced disorder-to-order transition. Simulations were performed in explicit water under near-physiological conditions, starting with an ideal α-helix. In the absence of phosphorylation, the helical periodicity of the peptide was disrupted at residues T9-K11, while phosphorylation significantly favored the helical periodicity, in agreement with experimental data. Using the MM/PBSA approach, we calculated a relative free energy of -7.1 kcal/mol for the disorder-to-order transition. A large enthalpic decrease was compensated by a large loss of conformational entropy, despite the small helical increase (no more than three residues) upon phosphorylation. Phosphorylation decreased the conformational dynamics of K and R side chains, especially R16, which forms a salt bridge with pS19. Mutation of R16 to A or E prevented this phosphorylation-dependent ordering. We propose that phosphorylation balances the enthalpy-entropy compensation of the disorder-to-order transition of RLC via short and long-range electrostatic interactions with positively charged residues of the phosphorylation domain. We suggest that this balance is necessary to induce a disorder-to-order conformational change through a subtle energy switching.
UR - http://www.scopus.com/inward/record.url?scp=51949096545&partnerID=8YFLogxK
U2 - 10.1021/ja803143g
DO - 10.1021/ja803143g
M3 - Article
C2 - 18715003
AN - SCOPUS:51949096545
SN - 0002-7863
VL - 130
SP - 12208
EP - 12209
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 37
ER -