Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer death in the United States. Cytotoxic therapies cause significant adverse effects for most patients and do not offer cure in many advanced cases of CRC. Immunotherapy is a promising new approach to harness the body's own immune system and inflammatory response to attack and clear the cancer. Tryptophan metabolism along the kynurenine pathway (KP) is a particularly promising target for immunotherapy. Indoleamine 2,3-dioxygenase 1 (IDO1) is the most well studied of the enzymes that initiate this pathway and it is commonly overexpressed in CRC. Herein, we provide an in-depth review of how tryptophan metabolism and KP metabolites shape factors important to CRC pathogenesis including the host mucosal immune system, pivotal transcriptional pathways of neoplastic growth, and luminal microbiota. This pathway's role in other gastrointestinal (GI) malignancies such as gastric, pancreatic, esophageal, and GI stromal tumors is also discussed. Finally, we highlight how currently available small molecule inhibitors and emerging methods for therapeutic targeting of IDO1 might be applied to colon, rectal, and colitis-associated cancer.

Original languageEnglish
Pages (from-to)67-79
Number of pages13
JournalTranslational Research
Issue number1
StatePublished - Jan 1 2016


Dive into the research topics of 'Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer'. Together they form a unique fingerprint.

Cite this