TY - JOUR
T1 - The vortex formation time to diastolic function relation
T2 - Assessment of pseudonormalized versus normal filling
AU - Ghosh, Erina
AU - Kovács, Sándor J.
N1 - Funding Information:
This work was supported in part by the Alan A. and Edith L. Wolff Charitable Trust (St. Louis, MO) and the Barnes-Jewish Hospital Foundation. E. G. is a recipient of a Heartland Affiliate predoctoral fellowship award from the American Heart Association (11PRE4950009).
Publisher Copyright:
© 2013 The Authors.
PY - 2013/11
Y1 - 2013/11
N2 - In early diastole, the suction pump feature of the left ventricle opens the mitral valve and aspirates atrial blood. The ventricle fills via a blunt profiled cylindrical jet of blood that forms an asymmetric toroidal vortex ring inside the ventricle whose growth has been quantified by the standard (dimensionless) expression for vortex formation time, VFTstandard = {transmitral velocity time integral}/ {mitral orifice diameter}. It can differentiate between hearts having distinguishable early transmitral (Doppler E-wave) filling patterns. An alternative validated expression, VFTkinematic reexpresses VFTstandard by incorporating left heart, near “constant-volume pump” physiology thereby revealing VFTkinematic’s explicit dependence on maximum rate of longitudinal chamber expansion (E′). In this work, we show that VFTkinematic can differentiate between hearts having indistinguishable E-wave patterns, such as pseudonormal (PN; 0.75 < E/A < 1.5 and E/E′ > 8) versus normal. Thirteen age-matched normal and 12 PN data sets (738 total cardiac cycles), all having normal LVEF, were selected from our Cardiovascular Biophysics Laboratory database. Doppler E-, lateral annular E′-waves, and M-mode data (mitral leaflet separation, chamber dimension) was used to compute VFTstandard and VFTkinematic. VFTstandard did not differentiate between groups (normal [3.58 ± 1.06] vs. PN [4.18 ± 0.79], P = 0.13). In comparison, VFTkinematic for normal (3.15 ± 1.28) versus PN (4.75 ± 1.35) yielded P = 0.006. Hence, the applicability of VFTkinematic for diastolic function quantitation has been broadened to include analysis of PN filling patterns in age-matched groups.
AB - In early diastole, the suction pump feature of the left ventricle opens the mitral valve and aspirates atrial blood. The ventricle fills via a blunt profiled cylindrical jet of blood that forms an asymmetric toroidal vortex ring inside the ventricle whose growth has been quantified by the standard (dimensionless) expression for vortex formation time, VFTstandard = {transmitral velocity time integral}/ {mitral orifice diameter}. It can differentiate between hearts having distinguishable early transmitral (Doppler E-wave) filling patterns. An alternative validated expression, VFTkinematic reexpresses VFTstandard by incorporating left heart, near “constant-volume pump” physiology thereby revealing VFTkinematic’s explicit dependence on maximum rate of longitudinal chamber expansion (E′). In this work, we show that VFTkinematic can differentiate between hearts having indistinguishable E-wave patterns, such as pseudonormal (PN; 0.75 < E/A < 1.5 and E/E′ > 8) versus normal. Thirteen age-matched normal and 12 PN data sets (738 total cardiac cycles), all having normal LVEF, were selected from our Cardiovascular Biophysics Laboratory database. Doppler E-, lateral annular E′-waves, and M-mode data (mitral leaflet separation, chamber dimension) was used to compute VFTstandard and VFTkinematic. VFTstandard did not differentiate between groups (normal [3.58 ± 1.06] vs. PN [4.18 ± 0.79], P = 0.13). In comparison, VFTkinematic for normal (3.15 ± 1.28) versus PN (4.75 ± 1.35) yielded P = 0.006. Hence, the applicability of VFTkinematic for diastolic function quantitation has been broadened to include analysis of PN filling patterns in age-matched groups.
KW - Diastolic function
KW - Tissue Doppler imaging
KW - Transmitral flow
KW - Vortex formation
UR - http://www.scopus.com/inward/record.url?scp=85008953494&partnerID=8YFLogxK
U2 - 10.1002/phy2.170
DO - 10.1002/phy2.170
M3 - Article
C2 - 24400169
AN - SCOPUS:85008953494
VL - 1
SP - 1
EP - 12
JO - Physiological Reports
JF - Physiological Reports
SN - 2051-817X
IS - 6
M1 - e00170
ER -