TY - JOUR
T1 - The VCAM1–ApoE pathway directs microglial chemotaxis and alleviates Alzheimer’s disease pathology
AU - Lau, Shun Fat
AU - Wu, Wei
AU - Wong, Hiu Yi
AU - Ouyang, Li
AU - Qiao, Yi
AU - Xu, Jiahui
AU - Lau, Jessica Hiu Yan
AU - Wong, Carlton
AU - Jiang, Yuanbing
AU - Holtzman, David M.
AU - Fu, Amy K.Y.
AU - Ip, Nancy Y.
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/10
Y1 - 2023/10
N2 - In Alzheimer’s disease (AD), sensome receptor dysfunction impairs microglial danger-associated molecular pattern (DAMP) clearance and exacerbates disease pathology. Although extrinsic signals, including interleukin-33 (IL-33), can restore microglial DAMP clearance, it remains largely unclear how the sensome receptor is regulated and interacts with DAMP during phagocytic clearance. Here, we show that IL-33 induces VCAM1 in microglia, which promotes microglial chemotaxis toward amyloid-beta (Aβ) plaque-associated ApoE, and leads to Aβ clearance. We show that IL-33 stimulates a chemotactic state in microglia, characterized by Aβ-directed migration. Functional screening identified that VCAM1 directs microglial Aβ chemotaxis by sensing Aβ plaque-associated ApoE. Moreover, we found that disrupting VCAM1–ApoE interaction abolishes microglial Aβ chemotaxis, resulting in decreased microglial clearance of Aβ. In patients with AD, higher cerebrospinal fluid levels of soluble VCAM1 were correlated with impaired microglial Aβ chemotaxis. Together, our findings demonstrate that promoting VCAM1–ApoE-dependent microglial functions ameliorates AD pathology.
AB - In Alzheimer’s disease (AD), sensome receptor dysfunction impairs microglial danger-associated molecular pattern (DAMP) clearance and exacerbates disease pathology. Although extrinsic signals, including interleukin-33 (IL-33), can restore microglial DAMP clearance, it remains largely unclear how the sensome receptor is regulated and interacts with DAMP during phagocytic clearance. Here, we show that IL-33 induces VCAM1 in microglia, which promotes microglial chemotaxis toward amyloid-beta (Aβ) plaque-associated ApoE, and leads to Aβ clearance. We show that IL-33 stimulates a chemotactic state in microglia, characterized by Aβ-directed migration. Functional screening identified that VCAM1 directs microglial Aβ chemotaxis by sensing Aβ plaque-associated ApoE. Moreover, we found that disrupting VCAM1–ApoE interaction abolishes microglial Aβ chemotaxis, resulting in decreased microglial clearance of Aβ. In patients with AD, higher cerebrospinal fluid levels of soluble VCAM1 were correlated with impaired microglial Aβ chemotaxis. Together, our findings demonstrate that promoting VCAM1–ApoE-dependent microglial functions ameliorates AD pathology.
UR - http://www.scopus.com/inward/record.url?scp=85171666778&partnerID=8YFLogxK
U2 - 10.1038/s43587-023-00491-1
DO - 10.1038/s43587-023-00491-1
M3 - Article
C2 - 37735240
AN - SCOPUS:85171666778
SN - 2662-8465
VL - 3
SP - 1219
EP - 1236
JO - Nature Aging
JF - Nature Aging
IS - 10
ER -