Sniffing is a rhythmic motor process essential for the acquisition of olfactory information. Recent behavioral experiments show that using a single sniff rats can accurately discriminate between very similar odors and fail to improve their accuracy by taking multiple sniffs. This implies that each sniff has the potential to provide a complete snapshot of the local olfactory environment. The discrete and intermittent nature of sniffing has implications beyond the physical process of odor capture as it strongly shapes the flow of information into the olfactory system. We review electrophysiological studies - primarily from anesthetized rodents - demonstrating that olfactory neural responses are coupled to respiration. Hence, the "sniff cycle" might play a role in odor coding, by allowing the timing of spikes with respect to the phase of the respiration cycle to encode information about odor identity or concentration. We also discuss behavioral and physiological results indicating that sniffing can be dynamically coordinated with other rhythmic behaviors, such as whisking, as well as with rhythmic neural activity, such as hippocampal theta oscillations. Thus, the sniff cycle might also facilitate the coordination of the olfactory system with other brain areas. These converging lines of empirical data support the notion that each sniff is a unit of olfactory processing relevant for both neural coding and inter-areal coordination. Further electrophysiological recordings in behaving animals will be necessary to assess these proposals.

Original languageEnglish
Pages (from-to)167-179
Number of pages13
JournalChemical Senses
Issue number2
StatePublished - Feb 2006


  • Active sensation
  • Gamma rhythm
  • Hippocampus
  • Neural coding
  • Theta rhythm
  • Whisking


Dive into the research topics of 'The sniff as a unit of olfactory processing'. Together they form a unique fingerprint.

Cite this