TY - JOUR
T1 - The sexual lability hypothesis for the origin of the land plant generation cycle
AU - Renner, Susanne S.
AU - Sokoloff, Dmitry D.
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/7/22
Y1 - 2024/7/22
N2 - The evolution of the land plant alternation of generations has been an open question for the past 150 years. Two hypotheses have dominated the discussion: the antithetic hypothesis, which posits that the diploid sporophyte generation arose de novo and gradually increased in complexity, and the homologous hypothesis, which holds that land plant ancestors had independently living sporophytes and haploid gametophytes of similar complexity. Changes in ploidy levels were unknown to early researchers. The antithetic hypothesis is contradicted by generation cycles in Lower Devonian Rhynie chert plants, whose sporophytes and gametophytes have similar morphologies and by some Silurian sporophytes whose complexity exceeds that of Rhynie chert sporophytes. The oldest unambiguous bryophyte gametophytes (thalli) are from the upper Middle Devonian, with an unconnected sporophyte nearby. Based on the 2024 discovery that conjugate algae are paraphyletic to land plants, we present a new hypothesis for the evolution of the land plant generation cycle, focusing on labile ploidy levels and types of reproduction found in conjugate algae. Our ‘sexual lability’ hypothesis assumes a period of unstable generation cycles (as regards ploidy), likely with predominant clonal growth, as is common in conjugate algae, resulting in sporophytes and gametophytes of similar morphology. When sexual reproduction became stabilized, the timing of gamete fusion, meiosis, and resistant wall formation, which are heterochronic in some conjugate algae, became standardized, with wall formation permanently delayed. In our scenario, independently living adult sporophytes are the land plant ancestral condition, and life-long sporophyte retention on the gametophyte is a bryophyte apomorphy.
AB - The evolution of the land plant alternation of generations has been an open question for the past 150 years. Two hypotheses have dominated the discussion: the antithetic hypothesis, which posits that the diploid sporophyte generation arose de novo and gradually increased in complexity, and the homologous hypothesis, which holds that land plant ancestors had independently living sporophytes and haploid gametophytes of similar complexity. Changes in ploidy levels were unknown to early researchers. The antithetic hypothesis is contradicted by generation cycles in Lower Devonian Rhynie chert plants, whose sporophytes and gametophytes have similar morphologies and by some Silurian sporophytes whose complexity exceeds that of Rhynie chert sporophytes. The oldest unambiguous bryophyte gametophytes (thalli) are from the upper Middle Devonian, with an unconnected sporophyte nearby. Based on the 2024 discovery that conjugate algae are paraphyletic to land plants, we present a new hypothesis for the evolution of the land plant generation cycle, focusing on labile ploidy levels and types of reproduction found in conjugate algae. Our ‘sexual lability’ hypothesis assumes a period of unstable generation cycles (as regards ploidy), likely with predominant clonal growth, as is common in conjugate algae, resulting in sporophytes and gametophytes of similar morphology. When sexual reproduction became stabilized, the timing of gamete fusion, meiosis, and resistant wall formation, which are heterochronic in some conjugate algae, became standardized, with wall formation permanently delayed. In our scenario, independently living adult sporophytes are the land plant ancestral condition, and life-long sporophyte retention on the gametophyte is a bryophyte apomorphy.
UR - http://www.scopus.com/inward/record.url?scp=85198725051&partnerID=8YFLogxK
U2 - 10.1016/j.cub.2024.05.029
DO - 10.1016/j.cub.2024.05.029
M3 - Review article
C2 - 39043145
AN - SCOPUS:85198725051
SN - 0960-9822
VL - 34
SP - R697-R707
JO - Current Biology
JF - Current Biology
IS - 14
ER -