TY - JOUR
T1 - The role of neural load effects in predicting individual differences in working memory function
AU - Li, Y. Peeta
AU - Cooper, Shelly R.
AU - Braver, Todd S.
N1 - Publisher Copyright:
© 2021
PY - 2021/12/15
Y1 - 2021/12/15
N2 - Studies of working memory (WM) function have tended to adopt either a within-subject approach, focusing on effects of load manipulations, or a between-subjects approach, focusing on individual differences. This dichotomy extends to WM neuroimaging studies, with different neural correlates being identified for within- and between-subjects variation in WM. Here, we examined this issue in a systematic fashion, leveraging the large-sample Human Connectome Project dataset, to conduct a well-powered, whole-brain analysis of the N-back WM task. We first demonstrate the advantages of parcellation schemes for dimension reduction, in terms of load-related effect sizes. This parcel-based approach is then utilized to directly compare the relationship between load-related (within-subject) and behavioral individual differences (between-subject) effects through both correlational and predictive analyses. The results suggest a strong linkage of within-subject and between-subject variation, with larger load-effects linked to stronger brain-behavior correlations. In frontoparietal cortex no hemispheric biases were found towards one type of variation, but the Dorsal Attention Network did exhibit greater sensitivity to between over within-subjects variation, whereas in the Somatomotor network, the reverse pattern was observed. Cross-validated predictive modeling capitalizing on this tight relationship between the two effects indicated greater predictive power for load-activated than load-deactivated parcels, while also demonstrating that load-related effect size can serve as an effective guide to feature (i.e., parcel) selection, in maximizing predictive power while maintaining interpretability. Together, the findings demonstrate an important consistency across within- and between-subjects approaches to identifying the neural substrates of WM, which can be effectively harnessed to develop more powerful predictive models.
AB - Studies of working memory (WM) function have tended to adopt either a within-subject approach, focusing on effects of load manipulations, or a between-subjects approach, focusing on individual differences. This dichotomy extends to WM neuroimaging studies, with different neural correlates being identified for within- and between-subjects variation in WM. Here, we examined this issue in a systematic fashion, leveraging the large-sample Human Connectome Project dataset, to conduct a well-powered, whole-brain analysis of the N-back WM task. We first demonstrate the advantages of parcellation schemes for dimension reduction, in terms of load-related effect sizes. This parcel-based approach is then utilized to directly compare the relationship between load-related (within-subject) and behavioral individual differences (between-subject) effects through both correlational and predictive analyses. The results suggest a strong linkage of within-subject and between-subject variation, with larger load-effects linked to stronger brain-behavior correlations. In frontoparietal cortex no hemispheric biases were found towards one type of variation, but the Dorsal Attention Network did exhibit greater sensitivity to between over within-subjects variation, whereas in the Somatomotor network, the reverse pattern was observed. Cross-validated predictive modeling capitalizing on this tight relationship between the two effects indicated greater predictive power for load-activated than load-deactivated parcels, while also demonstrating that load-related effect size can serve as an effective guide to feature (i.e., parcel) selection, in maximizing predictive power while maintaining interpretability. Together, the findings demonstrate an important consistency across within- and between-subjects approaches to identifying the neural substrates of WM, which can be effectively harnessed to develop more powerful predictive models.
KW - Individual difference
KW - Load-related effect
KW - N-back
KW - Parcellation
KW - Working memory
UR - https://www.scopus.com/pages/publications/85117569400
U2 - 10.1016/j.neuroimage.2021.118656
DO - 10.1016/j.neuroimage.2021.118656
M3 - Article
C2 - 34678433
AN - SCOPUS:85117569400
SN - 1053-8119
VL - 245
JO - NeuroImage
JF - NeuroImage
M1 - 118656
ER -