TY - JOUR
T1 - The role of neural load effects in predicting individual differences in working memory function
AU - Li, Y. Peeta
AU - Cooper, Shelly R.
AU - Braver, Todd S.
N1 - Funding Information:
Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. Additional support provided by NIH R37 MH066078 to TSB. The authors thank Joset A. Etzel for helpful discussions on the analyses and feedback on the manuscript.
Funding Information:
Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. Additional support provided by NIH R37 MH066078 to TSB. The authors thank Joset A. Etzel for helpful discussions on the analyses and feedback on the manuscript.
Publisher Copyright:
© 2021
PY - 2021/12/15
Y1 - 2021/12/15
N2 - Studies of working memory (WM) function have tended to adopt either a within-subject approach, focusing on effects of load manipulations, or a between-subjects approach, focusing on individual differences. This dichotomy extends to WM neuroimaging studies, with different neural correlates being identified for within- and between-subjects variation in WM. Here, we examined this issue in a systematic fashion, leveraging the large-sample Human Connectome Project dataset, to conduct a well-powered, whole-brain analysis of the N-back WM task. We first demonstrate the advantages of parcellation schemes for dimension reduction, in terms of load-related effect sizes. This parcel-based approach is then utilized to directly compare the relationship between load-related (within-subject) and behavioral individual differences (between-subject) effects through both correlational and predictive analyses. The results suggest a strong linkage of within-subject and between-subject variation, with larger load-effects linked to stronger brain-behavior correlations. In frontoparietal cortex no hemispheric biases were found towards one type of variation, but the Dorsal Attention Network did exhibit greater sensitivity to between over within-subjects variation, whereas in the Somatomotor network, the reverse pattern was observed. Cross-validated predictive modeling capitalizing on this tight relationship between the two effects indicated greater predictive power for load-activated than load-deactivated parcels, while also demonstrating that load-related effect size can serve as an effective guide to feature (i.e., parcel) selection, in maximizing predictive power while maintaining interpretability. Together, the findings demonstrate an important consistency across within- and between-subjects approaches to identifying the neural substrates of WM, which can be effectively harnessed to develop more powerful predictive models.
AB - Studies of working memory (WM) function have tended to adopt either a within-subject approach, focusing on effects of load manipulations, or a between-subjects approach, focusing on individual differences. This dichotomy extends to WM neuroimaging studies, with different neural correlates being identified for within- and between-subjects variation in WM. Here, we examined this issue in a systematic fashion, leveraging the large-sample Human Connectome Project dataset, to conduct a well-powered, whole-brain analysis of the N-back WM task. We first demonstrate the advantages of parcellation schemes for dimension reduction, in terms of load-related effect sizes. This parcel-based approach is then utilized to directly compare the relationship between load-related (within-subject) and behavioral individual differences (between-subject) effects through both correlational and predictive analyses. The results suggest a strong linkage of within-subject and between-subject variation, with larger load-effects linked to stronger brain-behavior correlations. In frontoparietal cortex no hemispheric biases were found towards one type of variation, but the Dorsal Attention Network did exhibit greater sensitivity to between over within-subjects variation, whereas in the Somatomotor network, the reverse pattern was observed. Cross-validated predictive modeling capitalizing on this tight relationship between the two effects indicated greater predictive power for load-activated than load-deactivated parcels, while also demonstrating that load-related effect size can serve as an effective guide to feature (i.e., parcel) selection, in maximizing predictive power while maintaining interpretability. Together, the findings demonstrate an important consistency across within- and between-subjects approaches to identifying the neural substrates of WM, which can be effectively harnessed to develop more powerful predictive models.
KW - Individual difference
KW - Load-related effect
KW - N-back
KW - Parcellation
KW - Working memory
UR - http://www.scopus.com/inward/record.url?scp=85117569400&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2021.118656
DO - 10.1016/j.neuroimage.2021.118656
M3 - Article
C2 - 34678433
AN - SCOPUS:85117569400
SN - 1053-8119
VL - 245
JO - NeuroImage
JF - NeuroImage
M1 - 118656
ER -