Abstract
The microphthalmia transcription factor MITF plays a pivotal role in the development and differentiation of melanocytes. The purpose of this work was to investigate the expression and function of the melanocyte-specific isoform MITF-M in human melanoma. We found that MITF-M is repressed in 8 of 14 established melanoma cell lines tested. Transfection of MITF-M into a melanoma cell line (518A2) lacking the M-isoform and into a permanent cell line established from normal melanocytes (NMel-II) resulted in slower tumor growth in a severe combined immunodeficient-mouse xenotransplantation model. The growth difference between vector control-transfected tumors derived from the NMel-II cell line (mean tumor weight ± SD, 3.2 g ± 1.13) and MITF-M (+) transfectants (mean tumor weight ± SD, 1.1 g ± 0.49) was significant (P = 0.018). The mean tumor weight of control-transfected 518A2 tumors was 0.99 g ± 0.22 and of MITF-M (+) transfectants, 0.69 g ± 0.32. The difference in growth between 518A2 controls and the MITF-M (+) transfectants was clear, however it did not reach statistical significance (P = 0.08). In addition to the growth-inhibitory effects, MITF-M expression led to a change in the histopathological appearance of tumors from epitheloid toward a spindle-cell type in vivo. These results indicate a role for the MITF-M isoform in the in vivo growth control and the phenotype of human melanoma. In conclusion, MITF-M may qualify as a marker capable of identifying subgroups of melanoma patients with different tumor biology and prognosis.
Original language | English |
---|---|
Pages (from-to) | 2098-2103 |
Number of pages | 6 |
Journal | Cancer research |
Volume | 62 |
Issue number | 7 |
State | Published - Apr 1 2002 |