TY - JOUR
T1 - The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis
AU - Gorman, Matthew J.
AU - Poddar, Subhajit
AU - Farzan, Michael
AU - Diamond, Michael S.
N1 - Publisher Copyright:
© 2016, American Society for Microbiology. All Rights Reserved.
PY - 2016
Y1 - 2016
N2 - The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice. Ifitm3-/- mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this, Ifitm3-/- fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infected Ifitm3-/- mice showed decreases in the total number of B cells, CD4+ T cells, and antigen-specific CD8+ T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells.
AB - The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice. Ifitm3-/- mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this, Ifitm3-/- fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infected Ifitm3-/- mice showed decreases in the total number of B cells, CD4+ T cells, and antigen-specific CD8+ T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells.
UR - http://www.scopus.com/inward/record.url?scp=84984645454&partnerID=8YFLogxK
U2 - 10.1128/JVI.00581-16
DO - 10.1128/JVI.00581-16
M3 - Article
C2 - 27384652
AN - SCOPUS:84984645454
SN - 0022-538X
VL - 90
SP - 8212
EP - 8225
JO - Journal of virology
JF - Journal of virology
IS - 18
ER -