The influence of surface stress on dislocation emission from sharp and blunt cracks in fcc metals

J. Schiøtz, A. E. Carlsson

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable with respect to the emission of a dislocation from the crack tip, whereas for all other metals studied the sharp crack is unstable. This result cannot be explained by existing criteria for the intrinsic ductile/brittle behaviour of crack tips, but is probably caused by surface stresses. When the crack is no longer atomically sharp dislocation emission becomes easier in all the studied metals. The effect is relatively strong; the critical stress intensity factor for emission to occur is reduced by up to 20%. This behaviour appears to be caused by the surface stress near the crack tip. The surface stress is a consequence of the many-body nature of the interatomic interactions. The enhanced dislocation emission can cause an order-of-magnitude increase in the fracture toughness of certain materials, in which a sharp crack would propagate by cleavage. Collisions with already existing dislocations will blunt the crack, if this prevents further propagation of the crack the toughness of the material is dramatically increased.

Original languageEnglish
Pages (from-to)69-82
Number of pages14
JournalPhilosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties
Volume80
Issue number1
DOIs
StatePublished - Jan 2000

Fingerprint

Dive into the research topics of 'The influence of surface stress on dislocation emission from sharp and blunt cracks in fcc metals'. Together they form a unique fingerprint.

Cite this